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CHAPTER 1

INTRODUCTION

When an educational researcher conducts a survey it is almost always carried

out in the administratively simple form of a clustered (and possibly

weighted and stratified) sample of schools and classes. If the analysis of

the data collected in this way is confined to means and differences between

Means, then the sampling variability, Whith is crucial to inference and to

a complete understanding of the results, may be found using formulae avail-

able in the standard texts (for example; Cochran; 1963, and Kish, 1965).

However, once the researcher attempts to use more sophisticated statistical

prOedures; the 'standard formulae' are found to apply only to simple random

sampling. In the past; researchers have applied these erroneous 'standard

formulae' and (hopefully) have handled the results with suspicion. Previous

research (PeaKer, 1975 and RotS, 1976) has shown that this suspicion is

Well-fOUnded. The search for a solution to this problem has thrown up

several approximate and intuitive techniques for estimating sampling errors

given just one sample as evidence (Kish and Frankel, 1974). It is the

purpose of this study to investigate the accuracy of one such approximation

technique (Woodruff and Causey; 1976) under several of the types of sampling

schemes that a typical educational research worker might be forced to employ.

Of course; the accuracy of the results is not the only criterion for

evaluating such a technique. Ease of application is of great practical

importance; as is flexibility in the face of the diverse statistical and

sampling situations which arise in educational research. The particular

technique to be StUdied was chosen because it was found to be the only

technique available which struck a worthwhile balance between the demands

it places on the skills of the research worker and the range of possible

applications in which it would be suitable. Tb apply the technique the

researcher must be able to write a few Fortran subroutines and must be able

to ascertain a sampling error formula for a mean for whatever sampling

situation is to be used (i.e. look up one of the standard texts). In return

the technique will provide an estimate of the sampling error for any

statistic which can be expressed in terms of a Fortran subroutine.

1



The two demands on the researcher are also investigated ih this study.

A guide to the use of the technique and the writing of the Fortran sub-

routines is provided as an Appendix in Microfiche to this Paper. Several

approximation formulae for the sampling error of a me:di, Which might apply

over a very wide range of sampling situations, are coupled with the

technique and their performances evaluated. The establishment of an

adequate approximation formula would considerably decrease the difficulty

in applying the technique and open the way for its incorporation into

'user-oriented' packages:

2 1



C'IIAP'I'IiR 2

LITERATURE REVIEW

2:1 Introduction

The substance of most Sampling Theory textbooks (for example, Cochran

(1963), and Kish ( 1965) ), is the estimation of devemptive statistics and

their Standard errors for complex sample designs. descriptive statistics are

aggregates and means, and their ratios and products. However, many prac-

titioners are also interested in estimating analytical statistics such as

regression coefficients; discriminant functions and correlation coeff-

icients, for the complex samples they use. Theory is lacking for the

estimation of the standard error of analytical statistics for complex

samples: researchers have been forced to resort to the formulae supplied

by the textbooks for simple randoth sampling.

Iii order to alleviate this unfortunate situation attempts have been

made to construct an appropriate theory with which to tackle the problemi

but progress has been slow. Another solution was proposed by Tukey (1954):

Statistical methods should be tailored to the real needs of the
user 'What should be done' is almost always_more important
than 'what can be done exactly'. Hence new developments in
experimental statistics are more_likely to come in the form of
approximate methods than in the forM Of exact Ones.

Several techniques for approximating standard errors from single

samples have been described: I shall refer to them collectively as

'single-sample techniques'.

There are the replicated sampling techniques of Jackknifing and

Balanced Repeated Replication (also known as Pseudo-replication), the

random splitting technique (also known as Independent Replication and

Deming's Technique) and the Taylor's series approximation (variously known

as the linearization method, the delta-technique, the propagation of error,

and Taylorized deviations). A brief description of the first two and a

more detailed analysis of the last follows.

2.2 Replicated Sampling Techniques

RepliCated Sampling Techniques were first used by Mahalancibis (1944, 1946)

in surveys of jute in India in 1936. Deming (1956; 1960) advocated

designing samples which are easily broken-down into subsamples.



Two techniques which have gained prominence are Balaked Rep ated

Repliccitio?i and the Juckkhife.

SUppose that a statistic y is being used to estimate a parameter 0

according to some sampling plan: The first technique; Balanced Repeated

Replication; is used where the sample is divided into strata with two

units Seletted from each stratum. Tne replication is a half-sample created

by selecting one of the two sample units in each of the strata. The

replication process is repeated g times. Then the estimates y which are

formed by estimating the parameter from the complementary half samples of

the i

th
replication may be used to approximate the variance of y thus:

Var(y) 2:
g 1=1

(yi y) 2

McCarthy (1966) has shown that the most efficient strategy is to

select orthogonal replications only.

For the second technique, the Jackknife, which was originally due to

Quenouille (1956) and Tukey (1958), the sample is divided into g groups of

size m. Then tile values yk, the estimates based on the m(g-1) observation

remaining after deleting the k
th

group of m obserVations, are used to

ascertain the 'pscudovalues' y thus:

YZ = gY (g-l) y1

These can then be used to form a jackknife estimate of 0

=
g k=1

YU

and to estimate the variance of y

Var(y) = Var(b) *
g(g-1) 'Yk Yb61

Investigations by Miller (1968) have suggested that these estimates will

be satisfactory when y can be expanded in a power series for each bbserV-
,

ation with

(i) the first-order term linear or regular in the observations;

(ii) second and higher-order terms negligible.

Similar, though less restrictive assumptions, will be made later for the

Taylor's series approximation.

4



2.S Random SRI

The randdm subsample teChnique was developed by Deming (1960) following

suggestions from Tuley: He estimated the variance of a statistic y

by splitting the sample into 10 equal; independent and random subsamples,

estimating the statistic for each subsample Cy.) and feg the entire sample

(y) and then approximating the variance of the statistic by the variance

of the mean (y) of the subsamplc statistics.
10

2] (i =
Var(y) a i=1

10(10 = 1)

Ten was the number recommended by Tukey but the approximation holds, to a

greater or lesser extent, no matter how many subsamples are taken.

Although superficially simple; this technique has several disadvantages

for educational research. First; the estimation of complicated statistics

may be neither stable, meaningful nor unbiased if only a small number of

subsample3 is taken (Finifter (1972); Mosteller and Tukcy (1968)); Use of

so many subsamples all modelled on the possibly clustered and stratified

original sample would negate the computational simplicity of the original

idea. Second, strata with small numbers of elements may need to be

combined to allow the total sample to be divided into a large number of

samples, resulting in a loss of detail. Third, if a large number of sub=

samples is used, outliers in the original sample will have little chance of

appearing in some of the subsamples (Deming; 1956).

These difficulties have meant that researchers have concentrated on

the other two techniques.

2.4 The-

The use of a Taylor's series approximation to obtain an estimate of the

variance of a mean has been familiar to statisticians for some time. Its

use for 'analytical statistics' was described by Deming (1960:390-396) and

Kish (1965:585); and an early authoritative statement on its use was made

by Kendall and Stuart (1963:231).

Let g be a function of the sample variates xi; x2 ... xk, which are

assumed to take the expected values 01, 02 ek. If g is differentiable

at the point (0i, 02 ... 8k), then the Taylor's series expansion of g

about (Oii 02 ... Ok) is

Li



g(xl, x2 .

k
Dg

+ -- (X - (L)
DX i

i=1

D`(
(Xi - 0) (5

3
-

2! '1
J.1 i=1 3

_k_

E
,1 i-1

x (x: - 0,) (xi = 0i)

3

-
Dx

0
Dx m m

)

(1)

+ (Kendall C, Stuart, 1963 : 231-232)

where the partial derivatives are calculated at the appropriate expected

values. The firSt=order approximation to g is

Lg(x
l'

x
2

x
k

) = g(0 4* (X. - O.)
OXi 1

(2)

The first assumption made in the use of the Taylor's series approximation

is that the sampling distribution of g is approximately equal to the

sampling distribution of this linearized version of g; Thus

Var (g) = Vat (Lg)

k

Var (g(ol, o 0 ) + 2: 2-11

1=1 i

= Var
dgL x

i=1 i 1

since g(0 Y Oi arc both constants (Frankel,

1971:28).

and

Actually using such an estimator depends of course upon obtaining

values for the partial derivatives; The second assumption involved in

the use of the Taylor's series approximation is that values of these

partial derivatives Obtained from the

of their true values. Tepping (1968)

he estimated the sampling variance of

multi-stage sampling design. Formulae

(3)

sample are reasonable approximations

made use of such a technique when

a regression coefficient over a

for these partial derivatives

are available for some of the more common statistics such as ratio means,

6



correlation coefficiel ts, and regression coefficients (Frankel, 1971:30-31)

However, beyond this the graund is as yet unexplored. Furthermore, although

Topping found a means of using equation (3) in the particular sampling

situation he was invest1L;atiug, he alsu noted that:

... the manner In which the variance of that linear approximation
May be estimated will of course depend on the sample design
('rukcy, 1954:723)

Unfortunately the procedure for doing so is far from routine:

It was to this latter problem that Woodruff (1971) turned his attention.

By restricting the variates to those which are sums of th5! observations (or

sums of transformations of the obSerVationS), equation (3) may be re-

expressed thus:

,.,

m
-D-g- v'

(

Var(g) Var
12:=E1

-57c

-1

xi.
(4)jt

when it is assmed that the observed values have been enumerated from 1 to

n for each variate x.1 . As the two summations are finite, their order may

be reversed to give

Var(g) = Var(22
3x: ij

.j=1

By defining a 'U = statistic' for each case by

1
ag

U. = X..

i=1
ax: ij = 1,2

the equation becoMes

tt

Var(g) = Var - U.
j=1 3

(5)

(6)

(7)

Now the U-statistics are simply anivariate statistics which are linearly

related to the original variates xi ... xk. The formula for the evaluation

Of the variance in equation (7) is the one which would be appropriate for

the estimation of the variance of a variable under the particular sampling

design being used. This information is available in the standard texts

for a wide range of sample dosigns (see, for example, Cochran (1963) and

Hansen, Hurwitz and Madow (1953)): It should be noted that these standard

texts will often quote a formula for the sampling error of the mean of a

variable which will have to be adjusted to give the variance of the variable

which is needed here. This procedure will be referred to as the Woodruff

algorithm, or the Woodruff technique.

l it



A Worked Examp-1-&. The description of the algorithm used to estimate

sampling errors will be made clearer and more concrete by the following

example;

Consider the simple linear regression of the variable x on the

variable y, with n observatiOnS,

Y-1
a + bx. + e. i = 1 .. (8)

With the usual assumptions the best estimator of the regression slope b is

(x. - R

(x.

i=1

where x =
n

I: x:

If we define,

(9)

s. = (x. - x) . i = 1 ... n (10)

- 2
t. = (x: x) =

as the variateS zo be used in the algorithm, then
n

si
i=1

zi-

2: ti
i=1

and if

= G si
i=1

t = E ti
i=1

(12)

then

b = (13)

Now the derivatives of the estimator with respect to each of the

totals s and t may be found,



as t
ob -s

Dt

(14)

Recourse to equation (7) then gives the Taylor Approximation of the

Variance of b as;

(11 Db t.
n-

VarVar (b) = Var +

i=1 i=1

(15)

1-1-

(

s. st.
i

i=1 t t
2 (16)

= Var 2; -- -
i

= Var
Ui

(17)

i=1

S. st,

where U. = (18)
1

t
2

The variance involved in equation (17) is the variance appropriate

for a total according to the particular sampling technique used;

The restriction to functions of statistics which are totals of the

observations is not so great as it may appear at first glance. For instance,

a statistic as complicated as a multiple correlation coefficient may be

expressed as a function of the sums and sums of squares and sums of cross-

products of the variables involved in the regression equation. In this case

the original list of variates need only contain all of theSe in order that

the Woodruff algorithm be implemented.

In a paper; written by Woodruff and Causey (1976), a computer program

is described which implemented this algorithm and solved the problem of

evaluating the partial derivatives by the use of a numerical technique which

avoids the necessity of supplying a formula. It doeS hoWever, involve the

writing of at least one Fortran subroutine.

They checked the accuracy of this further approximation in three ways.

First they compared the true partial derivatives with the numerical approx-

imations, and found that the greatest relative difference was less than two

parts in a million over a range of partial !rivatives involved in the

cylculation of 48 different estimates in a six stratum sampling design.

9



Second. they compared the variance estimates for these 40 statistics given

by the Taylor's ;cries approximation using analytic derivatives; the relative

differences were all less than one part in a million. Third; for those

statistics for which no analytic derivatives were available, they compared

the Taylor's series approximation using numerical deti.,atiVe8 with the

Balanced Repeated Replication and Jackknife techniques over a very wide

range of sampling designs; the results were found to he similar to those

that Frankel (1971) achieved in comparisons using analytical derivativeS.

2.5 Earlier Evaluations of the Taylor's Series Approximation

Several studies investigating the Taylor's series approximation for the

^StiMation of standard errors were conducted without the Woodruff-Causey

modifications. The three most important were thoSe of Frankel (1971),

Mellor (1973) and Bean (1975);

Frankel used data collected by the US Bureau of the Census in the 1967

CUrrent Poilblation Survey to simulate clustered stratified sampling on the

basis of two primary sampling units per stratum. Comparison of the

Replication; .Jackknife and Taylor's series techniques was made for several

sampling designs and for estimates of the mean, the difference of means,

simple correlation coefficients, regression coefficients and multiple

correlation coefficients: His colusion was that although all three

techniques gave satisfactory estimates of variance, (except possibly for

the multiple correlation coefficient) the Taylor technique resulted in

smaller mean square error whilst Balanced Repeated ReplicatiOn gave a

better approximation to Student's 't' statistic. Mellor's design was

similar to this but used Monte Carlo simulation rather than existing

population data and extended his comparison to partial correlation coeff-

icients. His conclus'ons were essentially the same as those of Frankel,

although he did note the comparative strength of Taylor's series approx-

imation for error analysis of order statistics and highly skewed distrib-

utions. Bean, working at the National Center for Health Statistics;

diSiiiisSOd this use of synthetic populations as being 'of questionable

representativeness': She concluded from her study that both the Balanced

Repeated Replicrktion and the Taylor's series approximation gave adequate

precision on the two criteria employed by Frankel, (Bean, 1975:10-14).

10



Accompanying the Woodruff-Causey paper was an empirical study using

the same data as Frankel. The results of this study reinforced the

conclusions of Frankel; although it was noted that the results using the

Taylor's series approximation Irecame substantially better with increased

sample size. However Woodruff and Causey noted two other advantages of

this technique:

1 The Taylor method is probably more economical for computer
time, particularly in situations involving large numbers of
strata (and/or simple draws). With the Taylor approximation,
the basic data need be passed through the computer only twice,
once to evaluate the partial derivatives and then again to
form the substitute variables._ The variances can then -be
computed with a single pass of these substitute variables.
With the other two methods, the basic data_must be tabulated
a large number of times to obtain the results for a large
number of partial samples. The 43;_200 variances using the
Taylor-N method for the 6, 12 and 30 strata designs required
38 minutes of UNIVAC 1108 central computer time (6 cents per
variance at Census Bureau rates for this machine); The

21;600 variances for the 90;_270 and 810 strata designs
required 85 minutes of UNIVAC 1108 central computer time (2.3
cents per variance). This includes the cost of the deriVativ0
evaluation as well as the actual variance computation.

2 The Taylor approximation is more versatile than the balanced
replication method, and can easily be applied to any design
for which_there is a reasonable approximation to the variance
of a single variable. The balanced replication method is most
easily applied in sample designs involving_a small number of
strata and two draws per stratum. It can become difficult in
other situations to find a balanced set of reasonable size.
(Woodruff and Causey; 1976:321)

A recent survey by Shah (1978) recommended the Taylor's series approx-

imation over the other three. He summarized the situation with Table 2.5.1

which is from his article. lie also noted that whereas for th0 Taylor's

series approximation the total cost of computing variances is about twice

that of computing the mean only; the other techniques require between SO

and 100 times the cost of computing the mean. Furthermore he points out

that if interpretation of the data requires the computation of variance

components; the Taylor's series approximation is the only technique

appropriate.

2.6 Sti-th- Rtactical Advances

Krewski and Rao (1978) have investigated the theoretical basis for the

Taylor, Jackknife and Balanced Repeated Replication methods of sampling

11



Table 2;S:1 Comparison -of Single- SampleTechniques (from Shah 1978:32)

Criteria

Techniqu Assumptions

Restrictions
on sample Computational

design problems Flexibility

Independent
replications

Minimal Severe Simple

Pseudo- _ Independence of 2 PSUs per Significant
replitatiOn complementary

half replicates.
stratum

Taylorized General_ central None Not__
deviations limit theorem diffieUlt

Jackknife Intuition None Greater than
Taylorized
deviation

Can be used
for variance
components

Maybe useful
for some
designs

error estimation. They have established that as the number of strata

approaches infinity; all three estimators are asymptotically normal and

consistent. Although not very useful from a practical point of view, this

result is nonetheless quite comforting. In a later paper they have also

investigated the small sample properties of the three types of estimator;

the results reported there are of interest but have a very restricted range

of applicability due to the very strong model-assumptions necessary in such

an investigation C.CrbWski and Rao, 1979).

Bobko and Reick (1980) have made an interesting application of the

Taylor's series approximation to functions of correlation coefficients.

AS in eqUation (4) above they make the approximation of the function g of

the correlation coefficients rl, r2 , rk thuS,

k_

Var (g(rl, r rk)) = 2: [g (p)]
2

var
i=1

2] )7 gi(p)e(p) cov
j=1 i=I
j/1

where p is the expected value of the correlation coefficients, i.e.

P = (E(ri), E(r2) E(rk))

12



Then using a normality assumption and some further restrictions they give

formulae for var(r
i

and cov(r:
' j

r-). Formulae for the derivatives are

given for some simple statistics such as the correction for attenuation

and indirect effects in path analysis; The resultant standard errors are

then evaluated using data derived from synthetic populations. The emphasis

on normal distributions points up the restriction in usefulness of this

particular approach. In situations when the assumption of normal distrib-

utions was not tenable (which is often the reason for trying a Taylor

Approximation) the expressions for the variance and covariance would not

be applicable: The strength of this approach may lie not in the value of

the actual standard errors obtained in any particular situation, but

rather in the value of obtaining fu..:Aional forms fer the standard errors

in terms of the correlation coefficients: The existence of such forms,

even though based on quite restrictive assumptions, allows the investigation

oT sampling errors on a different leVel to that Whith haS preViouSly been

possible:

Since the publication of the Woodruff-Causey paper, several general

programs using Taylor series approximations have become available. There

is, of course, thb original Woodruff-Causey program. Next was Shah'S

STDERR (Standard Errors Program for Sample Survey Data) which computes

certain ratio estimates or totals and their standard errors from the data

collected in a complex multistage sample survey and is available within

the SAS package (Shah, 1974). Hidiroglou, Fuller and Hickman (197S)

published SUPER CARP (Cluster Analysis and Regressions Programme) which

estimates totals, ratios, differences of ratios and regression coeff-

icients and their associated variances for several multiStage complex

designs and for a one-fold nested error structure. M.M. Holt (1977) has

produced SURREGR (Standard Errors of Regression Coefficients) for the

testing of hypotheses concerning regression models using a stratified

multistage sampling design and ordinary least squares or weighted least

squares. The World Fertility Survey has produced a program called CLUSTERS

which uses the 'collapsed strata' technique mentioned earlier to produce

error estimates for ratio estimators (Verma and Pearce, 1978). The Office

of Research and Statistics within the U.S. Social Security Administration

is developing a software package designed to accommodate many different

sampling designs but it is as yet able to offer the Taylor Approximation

only in the Keyfitz form (see equation (S)) (Finch, 1978). A survey of
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toe many computer programs available; summarising a few important features

for each, has also appeared (Kaplan, Francis and SedranSk, 1979). OtIO method

of evaluating these packages has been pursued by several researchers

(Woodruff and Causey; 1976 and Maurer; Jones and Brant, 197S). This

involves the comparison of the programs with respect to their computational

efficiency, evaluated in terms of central processing time; for a represent-

ativn sample of designs. Th;s comparison may loom large in the eyes of

computer programmers, but for a research worker, the issues of ease of

application and adaptability to different situations will prove much more

important.

Although mulch valuable work has been done at many research centres;

they have invariably been concerned with the so'Ution of the sampling

error problem in terms of the particular style of sample design dominant

at each centre and in terms of the particular range of statistics that are

studied there. The incorporation of sampling error routines into such

packages as SAS and OSIRIS has begun and will eventually make the calcu-

lation of sampling errors a routine procedure within the limitations of

the application of those packages. It would seem however that beyond

thiS the researcher Will be forced either to write entire programs for

whichever single-sample technique is chosen, or to write the type of semi-

standard subroutines which are necessary to the application of the Woodruff-

Causey program.

2.7 Mo-of V. -Educational Research

Attention to the problem of variance estimation by educational and psycho-

logical researchers was urged by Marks (1947) in connection with a revision

of the Stanford-Binet Scale.

Ignoring the effects of cluster sampling on measures of sampling
error has undoubtedly_resulted in attaching importance to results
which are statistically insignificant. (Marks, 1947:413)

He found that the standard errors as calculated by the simple random

sampling formulae were underestimating the true standard errors by a factor

of three. The first investigation of sampling errors for a large-scale

educational survey was made by Peaker (1953); Standard errors were found

to he underestimated by half in this case;

The whole topic was consolidated with the work of Kish who introduced

the statistic 'Doff' (design effect) which is
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the ratio of the actual variance Of a sample to the variance
of a . simple random sample of the same number of elements.
(Kish, 1965:258)

A useful modification of this is the 'design factor', abbreviated as

'deft', and equal to the square root of the design effect. (Verma et al,

1980)

Kish used oalanced repeated replication to estimate Doff values from

a sample of 2;200 tenth grade boys in American public schools (Bachman

et al; 1967). Deff for sample means was found to be less than three and

for correlation coefficients and ratios it was found to be about 2.3.

A Modification of Deming's technique using the range of estimates

provided by four independent samples was used by Peaker (1967) in an

international study of matheAatics achievement. He found Deff values of

correlation coefficients ranging from 1.96 (in Japan where clusters of 10

students per school were selected) to 8.4 (in Scotland where 7S students

per school were selected).

Keeves (1966) decomposed total variance due to classroom and variance

dile to students in what appears to be the first application of these tech-

niqu^s to Australian educational data. He also calculated Deff values of

from 1.00 to 21.3 using a similar method to that of Peaker (1967).

Jackknife procedures were used by Peaker (1975) in an international

study of achievement (Comber and Keeves, 1973) in which he found average

Doff values of 6 for means, 25 for correlations and 2 for regression

coefficients; the primary sampling unit used was the school.

Ross (1976) used an empirical approach to estimate Doff for several

typical sample designs and statistics in common use. He found that the

lowest values of Deff occurred for designs that used schools as the primary

sampling unit and also for the more complex multivariate statistics. A

comparison of the resultS with Balanced Repeated Replication and Jackknife

estimates revealed that both techniques were performing reasonably well on

the average. However he points out that individually estimates vary quite

considerably from the empirically=derived reSultS.
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CHAPTER 3

DESIGN OF THE STUDY

3.1 intraUtt_ion

The chapter which follows describes the procedures used to examine the

Taylor Approximation. A previous study is described in detail, as the

data-base and subsequent empirizal analyses provide a bench-mark against

WhiCh the technique can be compared. The comparison is in two parts.

Firstly; the Taylor Approximation is compared to the empirically-established

'true' estimates of variance. Secondly, it is compared with two other

single-sample techniques which were investigated in the previous study.

3.2 A-P_revious_Study

The present study capitalizes on data collected by Keeves (1971) and later

analysed by Ross (1976).

The remainder of the section is devoted to a summary of this data-base,

and the analyses to which it was subjected by Ross. Further details may be

found in Ross (1976) and Keeves (1971);

The Data-base The population under study consisted of 2354 Year 7

students in the Australian Capital Territory in August 1969. This was 95

per cent of all such students: data sets which so nearly encompass a

genuine population are extremely rare in educational research.

The students came from three school 'systems'. System 1 is a collection

of nine government schools with fifty-three Year 7 classes System 2 is

t011eCtibn of four Catholic schools with fifteen Year 7 classes. System 3

is a pair of independent schools with seven Year 7 classes.

Keeves gathered data on a large range of variables for this population.

Five were selected by Ross for inclusion in a causal model; they were chbsen

to represent a wide range of types of variable, to provide a range of

magnitudes of the intercorrelations between them, and to constitute a mean-

ingful model of educational achievement. These variables are &Scribed in

Table 3.2.1.

Tho Causal Model. The causal model used by Ross is an example of the

'Path Analysis' technique (Duncan, 1975). This technique and its application

to a particular situation could be subjected to any number of criticisms.
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Table 3.2.1 The Variahlos in the Causal Mode i

Variable name Description

SEX Coded on a two point scale with male = 1, female = 2;

FOCCUP The occupation of the student's father coded on a six

point occupational prestige scale (Broom et al, 1977).

LIKESCHL A 17 item scale designed to measure student's attitude

towards school.

EXPEDN A seven point rating designed to measure the Student'S

level of aspiration for further education.

A test of 55 mathematics items each of which was

scored: correct = 1, incorrect = 0.

However, the model is used in this study merely as an example of the type

of correlational analysi3 widely used in educational research.

The model investigates the relative influences among the variables

Under the assumption of a certain ordering of causality:

1 Antecedent student characteristics influence

2 Attitudes toward school and these characteristics and attitudes

influence

3 Aspirations towards further education and theSe charactersticS,

attitudes; and aspirations influence

4 Achievement in Mathematics.

These influences are measured by what are termed 'path coefficients'

Which may be shown to be equal to standardized regression coeffitients

(Kerlinger and Pedhazur, 1973:310-14). The first stage in this causal chain

consists of variables for which it is assumed that causes outside the model

completely determlne variability. At each subsequent stage it is assumed

that causality is unidirectional; that is, no variable can be both cause

and effect of another. A residual variable is included at each stage to

account for all other sources of variation (these are referred to by lower-

case letters a; b, c, etc.); It is assumed that a residual variable is

neither correlated with other residual variables nor with the variables

in the model to which it is not attached.

The model is illustrated in Figure 3.2.1. In interpreting correlation

coefficients and path coefficients associated with this figure it should be
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Figure 3:2.1 The Causal Model

noted that 'father'S occupation' is not scored in the 'usual' direction,

SO that a high score on this variable assigns a low relative rating on

the scale of occupational prestige.

lbe Sample Designs. In order to establish the effects of different

Sampling strategies, ROSS chose five sample designs and drew; from the

population described above; twenty-five samples of 150 students according

to each of the sample designs. Samples of size 150 were deemed appropriate

firStly as thiS is large enough to achieve stable estimates of the analytic

statistics used in correlational analyses involving a 'mediUm' number of

variables, and secondly as an example of the research designs which would

be within the economic and administrative resources of the typical educat-

ional research worker. Twenty-five replications were considered sufficient

to establish reliable empirical data for the sampling diStribUtiOns of the

various statistics associated with the causal model: The five sampling

designs are described below.

Design 1: Simple random sample of 150 students (SRS design).

Each sample is a simple random sample of 150 students from the entire

population.

Design 2: Stratified proportional simple random Sample of 150 students

(STR deSign).
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Table 3.2:2 Ckmtribution of Each Stratum to the STR Design

Number_of Proportion Number of Proportion
students in of students of

Stratum population population in sample sample

1 1611 0.684 103 0.687

2 539 0.229 34 0.227

3 204 0.087 13 0.086

Dotal 2354 1;000 150 1.000

The strata chosen were the three school systems. Each stratum

contributed to the sample in proportion to its size within the entire

population; and within each stratum an independent simple random sample

of students was chosen. The number of students from each stratum is

slion in Table 3.2.2.

Deign 3: Probability proportional to size selection of six primary

sampling units (schools) followed by simple random selection

of twenty-five students within each selected cluster (SCL design).

The fifteen schools were each allotted probability of selection

according to their size, then six were chosen, without replacement,

according to these probabilities. Within each school chosen, twenty-five

students were selected as a simple random sample.

Design 4: Probability proportional to size selection of six primary

sampling units (classes) followed by simple random selection

of twenty-five students within each selected cluster (CLS design

The sampling frame was first rearranged so that no class was smaller

than twenty-five. Small classes were amalgamated to form 'pseudoclasses'

and the same process was applied to these 'pseudoclasses' and to the larger

classes as was applied to the schools in the SCL design.

Design 5: Stratified cluster sample of 150 elements with two primary

sampling units (classes) being chosen from each stratum with

probability proportional to size selection followed by simple

random selection of 25 elements within each selected cluster

(WTD deSign).
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Table 3.2.3 Weights USed ih the WIT-le-s-igm

Stratum
(h)

Number of Number of
students in students in
the stratum the sample

(N
li

) (111
h

Weight

1 1611 50 2.053

539 50 0.687

204 50 0.260

Total N = 2354 n = 150 3;000

The sampling frame was first rearrang^d as for the CLS design. The

same techniques were then applied to the set of Classes and 'pseudoclasses'

within each stratum as were applied to the SCL design, but only two

selections were made. As this results in fifty students being selected

from each stratum, the data for each student selected was weighted in

proportion to the Size of the stratum from which it was selected:

If N is the population size

n is the total sample size

N- is the Site of stratum h in the population

h is the size of stratum h in the population

then the weight for stratum h is

n . Nh
IVh

-- (Kish; 1965:429)
nh

Table 3.2.3 details the calculation of these weights for each stratum.

(Note that for the other four sample designs each element of the population

has the same chance of being selected, and hence, no weights were needed.)

The Sampling Error Formulae. The statistics chosen for study were:

the Mean, the Correlation Coefficient; the Standardized Regression Coefficient

and the Multiple Regression Coefficient. The sampling error formulae

appropriate for each of these statistics under simple random sampling is given

in Table 3.2.4. All except that for the Correlation Coefficient are standard

results. For that statistic however; the more usual sampling error formula is

ar = (1 -r2) /v

20

n.
4,0



Table 3:2:4 Sampling Error Estimation Formulae -Used to Estimate the
Denominator of the Equation WhichDe-fii6Sthe_DOSigti Effect

Sample statistic Estimation formula

Mean (X)

Correlation coefficient (r)

Standardized regression
coefficient (b)

MUltiple correlation
coefficient (R)

= (Guilford and Fruchter,
1973:127)

=
1 (Guilford and Fruchter,

r VrT 1973:145)a

012

1-R2
1-234---m

(1-1r )(n-m)
2.34...M

(Guilford and Fruchter;
1973:368)

a
R

= - (Guilford_and Fruchter,
1973:367)b

This formula was not used (a) because we wished to provide the reader with

an example of how to use this technique in the relatively simple problem of

testing whether the Correlation Coefficient is zero (for this test one

assumes that r vanishes in order to cal.:ulate the sampling error and so the

above formula reduces to the one given in Table 3.2.4) and (b) because

there is some debate over the utility of this formula when r is small

(See McNeiriar, 1969:155) which is the case for several of the correlations

under investigation.

Results and Conclusions. Ross used the values of the square root of

the Design Effect, 'deft' to measure the sampling errors; The equation

defining this statistic is

deft
()c

srs

wherea_is the estimate of the standard deviation for the statistic
c

ana complex sampling design under consideration

and a- is the estimate of the standard deviation for the sameSrS

statistic which would be obtained if simple random sampling

formulae were used.
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The estimate was, of course; one of the goals of Ross's study.

The formulae Ross used for ci-si-5 were derived from one source (Guilford

and Fruchter, 1973), and are detailed in Table 3.2.4. The formulae apply

to the case of a simple random sample of n elements on m variables where

the variable X has a standard deviation of s. The multiple correlation

coefficient R
1.23 m

refers to the regression equation which haS
...

variable 1 as the criterion and variables 2, 3; m as the predictors.

The vvlues of the square root of the Design Effect (deft) for each

statistic averaged over the twenty -five replications and for each of the

five sample designs were calculated by Ross.

From this evidence Ross concluded that

... the use of complex sample designs to gather data may
greatly influence the sampling stability of the statistics
required to describe a recursive causal model. (RoSS, 1976:45)

Ross also calculated the valUes of deft given by two of the single=

sample techniques using one sample for each: Balanced Repeated Replication

was used with the WTD design; and Jackknifing was used with the CLS design.

Prom these two cases Ross concluded that both techniqrs provided

'useful estimates of average irieff'.

3.3 The Estimation df Sampling Errors from Single Samples Using a
Taylor Approximation

The Woodruff Algorithm was applied to each of the five sample designs in

order to estimate sampling errors. The process was repeated twenty-five

times for each design to obtain a reliable guide to the behaviour of the

estimate. The procedure followed is described in the remainder of this

section, the results obtained are discussed in Chapter 4. Details of the

application of the computer program may be found in Wilson (1981).

Variance Estimators for the Sample Designs. As mentioned previously,

a Fortran subroutine providing an estimate of the variance of a total must

be supplied to the program. The formula for each of the five sampling

designs is given below; Let U be the statistic under consideration;

SRS Design

Let u: be the observed value of the statistic for the i th
element

f be the total sampling fraction

n be the number of elbMentS in the sample

u be the mean of the u:'s

22
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Then the variance of the statistic U is estimated by

Var (U) = - nI (u. - u)

Let h=1,2 U be the strata

u
hi

fh

h

uh

h

(Woodruff and Causey, 1976)

be the observed value of the statistic for the
th

1 element in the h
th

stratum

he the sampling fraction in the h
th

stratum

be the number of elements sampled from the h
th

stratum

be the mean of hthuhl:s for the h stratum

be the proportion of the population in stratum h

Then the variance of the statistic U is estimated by

Al 1111

Var (U) = f )
(uhih n -1 . hi

h=1 1=1

(Woodruff and Causey, 1976)

SCL and CLS Designs

The most appropriate estimator for these two designs would be one which

took into consideration the use of prObability proportional to size

selection and the use of selection without replacement at both stages of

the two-stage design. Such an estimator is described by Sukhatme (1954:

410). However, this estimator Involves the use of the probabilities of

selection of the primary sampling units and of the joint probabilities

of selection of pairs of sampling units. This proved tractable though

costly for the case of schools, but when the same computations were

attempted for classes practical considerations involved in the use of

busy computer installations meant that the job muld never be finished.

This problem is mentioned by Sukhatme whO suggests that

... the USe of the estimate appropriate for sampling with
replacement; introducing the usual finite multiplier for
calculating the error variance, is probably sufficiently
satisfactory. (Sukhatme; 1954:415)

As this is the procedure most research workers would folloW in any case

it was decided to heed Sukhatme's advice.
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As the two designs are exactly the same apart from the size of the

Clusters used, a uni!'ied account is given below;

Let m. be the number of elements in the i

th
cluster

m
o

be the number of elements in the whale sample

n he the number of clusters sampled

f be the overall sampling fraction

ui be the mean value of the statistic in the i
th

cluster

mean
.

u be the mean of the u-'s
i

Then the variance of the statistic U is estimated by

n
Var (U) = f)

n(n-1)
(6: - 6)2

i=1

(Sukhatme, 1954:363)

W1'D Dc:;iCin

For this design a version of the previous estimator could be applied within

each stratum; the results weighted according to the relative sizes of the

strata and then add3d across strata to obtain an estimate for the population

variance. However, when this was attempted, the resultS proved extremely

unstable due to the presence of only two clusters per stratum;

Two alternatives presented themselves; ignore the stratification and use

the variance estimator for the CLS design, or ignore the clustering and

use the variance estimator for the STR design. As the effects of cluster-

ing had already been investigated for two different designs, it was

decided to pursue the latter strategy. Thus the variance estimator used

wasthatdescribedfOrtheSTRdeSign,WiththeStatiSti-cSand uh
uhi

replaced by the appropriate weighted statistics Ni and iii;;
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CHAPTER 4

RESULTS: THE PERFORMANCE OF THE WOO )RUFF

TECHNIQUE FOR ESTIMATING SAMPLING ERRORS

Ifi this chapter are discussed the performances of the Woodruff technique,

as applied in the Woodruff-Causey program; as regards the estimation of

sampling errors fcir the fiVe designs and using the five variance

estimators described in the previous chapter. The first section discusses

the evaluation techniques used; the second examines the results for the

SRS design, the third examines the results for the stratified designs and

the fourth examines the results for the clustered designs. The fifth

section compares these results with those obtained in a previous study,

and the final section is a summary of theSe reSultS.

4.1 The Evaluation Techniques

In discussing the effects of sample design, three types of evaluation

procedures were used: The first measures the relationship between the

estimates of sampling error obtained from the Woodruff-Causey program and

the 'true' sampling errors which were derived empirically. The second type

of evaluation relates to the internal consistency of the sampling error

estimates which were obtained from the Woodruff-Causey program. The third

type of evaluation investigates the extent to which the studentized ratios

are distributed as a 't' - statistic around their mean, which bears upon

their usefulness for hypothesis testing.

Design Effect. In order to establish a criterion for choosing between

sample designs, KiSh introduced the Word 'Deff', derived from 'design

effect', to name

the_ratio of the actual variance of a sample to the variance of
a simple random sample of the same number of elementS (Kish,
1965:258).

Thus; if an estimator u; of a population parameter u, is used under a

compleX sampling design C, then a measure of its efficiency is

vat (uc)
Deff (U,C) (1)

Var (UsrS)
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4.1.1 PopulatlonValues for-the-Statistics Used in the StlLiy.

Statistic Popu;ation Value

Means: SEX 1.4731

FOCCUP 3.1175

LIKESCHL 21.3732

EXPEON 4.2840

mknis 29.5415

Correlation Coefficients:

SF -0.01123

SL 0.14908

SE -0.09723

SM -0.07560

FL -0:13988

FE -0.41609

FM -0.37256

LE -0.39518

LM 0.21185

EM 0.51094

Path Coefficients:

SL 0.14752

SE -0.15609

SM - 0.04150

FL -0:13822

FE -0.36648

FM - 0.19684

LE 0.36719

LM 0.02672

EM 0.41444

Multiple Correlation Coefficients:

LIKESCHL 0.20329

EXPEDN 0.55926

MATHS 0.54211
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where we indicate!-; that the estimator is applied with the complex sample

designC,whereasu_indicates that a simple random sample of the same
srs

size was used. Note; 'hat Deff is dependent upon both the sample design

and the estimator u. Usually the relevant design and estimator are obvious

and the arguments are left out.

As the discussion of the effects o`' sample design is usually couched

in terms of sampling errors rather than sampling variance, a more

appropriate criterion is the desig': factor or 'deft' which is defined by

deft (u,C) = 45J7T (u,C) (Verma et al, 1980) (2)

Rosa (1976) made all his comparisons using this measure. It has been

pointed out that deft appears less sensitive to sampling errors than Deff

(KiSh, 1969:434).

Iii the interests of obtdining some stability in deft values, Kish

and Frankel (1970:1092) recommend that particular values of deft be obtained

for each instance of each type of statistic and that the average of these

van:es should be reported as deft. Of course, such an averaging process

must be confined to particular types of statistics due to differences in

units of measurement, sample size; and differences in the variances of the

variates involved in calculating the estimator.

The 'true' values of the various statistics were found using the SPSS

collection of programs with 'list-wise' deletion; This means that the

population parameters are slightly different to those quoted in Ross's

study; this is not a problem as all the most impottant comparisons to be

made were based on fresh samples; These values are given in Table 4;1;1

and will, for the purpose of this investigation, be considered true

population parameters. The multiple correlation coefficients in thiS table

are named by the criterion variable for the appropriate regression equation;

Calculation of design effects depends upon finding a good estimate of

the standard error which would obtain under simple random sampling with the

same number Of sample cases as was used in the complex sample. The formulae

used to calculate these simple random sampling standard errors were the

same as those used by Ross (1976:29-30) which were detailed in Table 3.2.4.

In using these formulr.e, an estimate of the population standard

deviation for each variable, and of the relevant Multiple Correlation

Coefficients was found using the entire population; The formula standard

error was then found using the appropriate number of sample cases.

27

3,3



This provides a 'best estimate' of the standard deviation that would be

Obtained from a simple random sample. In practice; a researcher would

almost always have to use the sample obtained by the complex sampling

process to estimate a---. Such estimates would vary greatly depending
srs

on the particular sampling scheme in Use: Use of the 'best estimate'

provides a stable standard against which to compare both the empirical

and the estimated standard errors of the complex designs;

These concepts were implemented according to the following formulae;

th
If f. is the estimate of the function f resulting from the i sample,

then the average, f, is given by

25

F = i1
fg--

and the empirical estimate of the standard deviation;

Sf =
^

2, f:-
9

25f-
1 =1 I

f'
-is given by

(3)

(4)

FUttlierMere, if f is the 'true' value of the function (i.e; that derived

from population data) and sf is the simple random sample standard deviation

derived from the formulae in Table 3.2.4, then the biaS of f is given by

bias (f) = f - f (5)

the Mean Square Error of f is given by

(f) [bias (f)]2 + (si)
2

(6)

and an empirical estimate of deft is given by

deft (fi,C) = f (7)
sf

where C denotes the complex sampling design under consideration. In

addition, the 'deft error' was also calculated; by this isimeant; the

percentage error incurred b) assuming that deft equals one; that is;

Jeff
deft error =

1 -
x 100

deft (8)

Thus; a deft error of -26:43% indicates that if one used the simple random

sampling version of the sampling error; one would be using an error estimate

Which was 26.43% below the correct figure.
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Recourse to a table of the probability distribution of Student's 't'

statistic on the appropriate number of degrees of freedom. (for example,

Pearson and Wisharti 1947:118-119) will then provide an interpretation of

this error in terms of true and apparent confidence intervalS.

These values were then compared with the Woodruff-CanSey estimated

standard errors in the following way.

th
If s

fi
is the estimate of the standard error of function f, then

the average standard error is simply
25

s i =1-

25

the i
th

estimate of deft is given by

sfi
deft (f.;C)

and the average deft is
25

deft (fi,C)
deft ( ;C) = 1=1 -

25

(9)

(10)

A percentage error involving this formula was also calculated using the

Formula

deft
deft error = x 100

deft
(12)

where deft refers to the empirical value and deit refers to the average

estimated deft for thb fUndtibn f.

Relative Mean Square Error. The internal consistency of the Woodruff-

CaUsey estimates of standard error was investigated using the following

statistics.

If s
fi

is the ith estimate of the standard error; and s
f

is the

average over the 25 samples, the standard deviation of the standard errors

is given by

st. dev.

the bias is given by

bias (s-) = sf - s-

= 25( )
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and the Mean Square. FrrOr iE given by

M,S,C, = [bias 0;01- + [st. dev. 6012 (15)

AS these statistics gain meaningfulness only by comparison with the

variability of the original function, f, and in order to allow comparison

across function which have different magnitudes, the Relative Mean Square

Frror was also Calculated,

MSF.*)
RELMSE

This can be broken down into ti.o .terms; Relative Bias, and Relative

Variance given by

RELBIAS

1,FLVAR (S'i)

[bias (5i.)12

[st. dev. (y]

2

Of course; RELMSE = RELVAR + RELBIAS,

(16)

(17)

(18)

TheSe statistics were those used by Frankel (1971:61-77), except that

he investigated the variance rather than the standard deviation. In

concordance with the use of 'deft' rather than 'Doff' it was decided that

measures of the internal consistency of the standard error were more

appropriate in this investigation.

Student's t . The third type of evaluatiun also follows the lead given

by Frankel (1971). There he examined the assumption:

The diStribUtiOn of the ratio of the first-order estimate minus_
its expected value, _to its estimated standard error is reasonably
approximated by Students' t within symmetric intervals,
(Frankel, 1971:78).

This assumption is crucial to the interpretation of the sampling errors

derived from the WOodruff-Causey program. If the assumption i,s tenable,

then credible inferences using the t-distribution can be mnde from the

samples; if the assumption is not tenable, then the standard errors could

still be utilized in a TChebytchev = type inequality, but such results

would De extremely conservative:
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i.shle 4. ;2 Proportion of Students' t Within Selected Intervals

Degrees of Freedom ±2.576 -11.960

3 0.9196 0.8549 0:8124

4 0.9384 0.8782 0.8244

5 0.9503 0.8925 0.8502

(Standard
normal case)

0.9900 0.9500 0.9000

Note: These proportions were (where necessary) calculated by linear
interpolation from a table of the probability integral of
Students' t in Pearson and Wishart (1947:118-119).

ratio

The investigation eonsistc of finding the proportion of tins the

f

5ti

(19)

fell within the intervals (-2,576, 2;576); (-1.960; 1.960) and (- 1.645;

1.645). These proportions were then compared to those predicted by

'Student's t' on an appropriate nunber of degrees of freedom.

Table 4.1.2 gives the Student's t proportions that were used for

comparison.

For the non-stratified designs using a simple random sample variance

estimator, the appropriate number of degrees of freedom is the number of

sample cases minus one. Stratified designs usually take the number of

eases minus the number of strata; but the presence of unequal stratum

sizes and of weighting make this only an approximation. Frankel, invest-

igating a series of designs involving many strata, but only two cases per

stratum; hypothesized that the number of degrees of freedom was equal to

the number of Strata; this point is discussed in Section 4.4 (Frankel;

1971:79).

For the Jackknife variance estimator the appropriate number of degrees

of freedom is one less than the number of distinct pseudovalues (Mostener

and Tukey; 1977:36), For all the Jackknife examples used in this study,

there were six different pseudovaiue::, so the number of degrees of freedom

was five. For the Balanced Repeated Replication variance estimator; the

number of degrees of freedom was frur. For the variance estimator used in

the SCL and CLS designs the number of degrees of freedom is the number of

cluster§ minus one; in this case, five.

31



Table 1.2.1 Average

Average 'N' was 145.80

Deft Estimates for each Statistic

:

Percent error Percent error

Function Empirical Estimated of estimator of formula

Means: SEX 1.0057 0.9691 -3.6 -0:6

FOCCOP 0:9423 0.9593 1:8 6.1

LIKESCIIL 1.1018 0.9610 -12.8 -9.2

EXPEDN 1.0507 0.9842 -6.3 -4:8

MAIIIS 0:8741 0.9629 10.2 14:4

Correlation Coefficients:

SF 0.9787 0.9667 -1.2 2.2

SL 0.7320 0.9325 27.4 36.6

SE 0:8421 0:9610 14.1 18.7

SM 1.1150 0.9486 -14.9 -10.3

FL 1.0966 0.9003 -17.9 -8.8

FE 0.7693 0.8174 6:3 30:0

FM 0.8022 0.8170 1.8 24.7

LE 1.0302 0.8266 -19.8 -2.9

LM 0;9649 0:8917 -7.6 3.6

EM 0.7169 0.6826 -4.8 39.5

Path Coefficient:::

SL 0:7524 0:9295 23.5 32.9

SE 0.8634 0.9368 8.5 15.8

SM 1.1406 0.9068 -20:5 -12:3

FL 1:1320 0:9008 -20:4 -11.7

FE 1:1493 0.9367 -18.5 -13.0

FM 0.9582 0.9530 -0.5 4.4

LE 1.1172 0.9695 -13:2 -10.5

LM i.0471 0:9413 -10.1 -4.5

EM 0.9078 0.8836 -2.7 10.2

Multiple Correlation Coefficients:

LIKESCIIL 0.8662 0:8852 2.2 15:5

EXPEDN 0:6620 0.6371 -3.8 51.1

MATHS 0.6756 0.6246 -7.5 48.0

Note: Values recorded in columns 2 and 4- -could be improved by making
corrections for cases where r # 0 or R # 0;

32

A



4:2 Results for the SRS Design

The application of th,_ Woodruff technique to this design may seem super-

fluous, after all, estimators for sampling errors for this design are well

establiShed. The investigation is important however, firstly because it

provides a bench-mark against which to compare the results for all the other

sample designs; and secondly because the 'formula' sampling errors quoted

in Table 3.2.4 are all dependent upon some sort Of normal-distribution

assumption. This may not be appropriate. In addition, it should be noted

that the formulae in Table 3.2.4 are appropriate for sampling with replace-

ment from infinite normal populations. The methods used in this investigation

relate to sampling from finite populations without replacement;

The average of deft for each of the statistics is given in Table

4.2.1. The fit5t column gives the empirical values of deft obtained from

the 25 simulations. The degree of variation from 1 indicateS just hoW

tenable was the 'formula' standard error; the empirical values range from

0.66 to 1;14 Which indicates that the non-normal nature of the distributions

of the variables is having considerable influence on the sampling errors of

the statistics. The second column gives the estimated value of deft given

by 25 applications of the Woodruff technique; It is striking that, except

for the Multiple Regression Coefficients the values in this column show

much less variation than those in the previous column.

Mi.; in itself is not altogether a problem; if one is concerned

primarily with the quality of the approximation for each of the statistics;

it is worrisome. However; if the aim is to arrive at a reasonable deft

estimate for each type of statistic, it need not be a problem at all.

Kish 8nd Frankel (1970:1092) recommend exactly this latter course, and in

the main; their advice is hereby adhered to although in some cases comment

is made on individual statistics. The third column gives the error in the

deft estimate relative to the empirical deft: The worst error is 27% for

the correlation between SEX and LIKESCHL. The final column gives the error

involved in using the 'formula' version of sampling error (that is, assuming

that deft is 1) relative to the empirical situation; The worst errors in

this column are; for individual statistics considerably worse than for the

previous column.

The information contained in 4.2.1 is summarised by type of statistic

in Table 4.2.2. The Woodruff technique is providing a slight underestimate

of deft that is no more than 10 per cent in error. The 'formula' estimate
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Table 4.2.2 Average

Average 'N' was 145.80

Deft Estimates (SRS samples)

Statistic Empirical Estimated
Percent error
of estimator

Percent error
of formula

Means

Correlation Coeff.

Path Coefficients

Mult. Corr. Coeff.

0;9949

0.9048

1.0076

0.7346

0.9673

0.8744

0.9287

0.7157

-2.E

-3.4

-7.8

-2.6

0.5

10.5

=0.7

36.1

Of deft is relatively better for the Means and the Path Coefficients and

relatively poorer for the Correlation Coefficients and the Multiple

Correlation Coefficients. One way of assessing the importance of these

errors is examine the real meaning that 95 per cent confidence intervals

would have if these erroneous deft values were used; Table 4;2.3 gives

the probability of an incorrect statement if a two-sided 95 per cent

confidence interval is used: the probability should be 0.050. The

'formula' standard error for Multiple Correlation Coefficients is found to

be very conservative; but all the rest would most probably be acceptable

to most cducat:onal researeherS.

Table 4.2.3 Probability of an Incorrect Statement About the Statistics

in the SRS Design

Statistic

Probability of incorrect
statement when a two-sided
95% confidence interval is
to be used.

'formula' Woodruff estimate

Means 0.049 0.057

Correlation Coefficients 0.030 0.058

Path Coefficients 0.052 0;069

Multiple Correlation Coefficients 0.008 0.056
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Table ,L2:4 Average Bias and Variance Contributions to the Relative Mean

square Errors for the Statistics in the SRS Design

Statistic Relative
Bias

Relative
Variance

Relative Mean
Square Error

Means 0.006 0.002 0.008

Correlation Coeffieients 0.020 0.004 M25
Path Coefficients 0.023 0.004 0.028

Multiple Correlation Coefficients 0.002 0.012 0.015

Table 4.2.4 gives the contributions of the Bias and the Variance to

RELMSE for the statistics under study. The variance contribution is very

stable for the first three statistics, not ranging above one part in a

hundred. Thus the variance estimator is about 1 per cent as variable as the

statistic itself; For some individual statistics the Bias component is

smaller than the Variance componenti but on average, for all three types of

statistics, the Variance component is much smaller than the Bias component:

For the Multiple Correlation Coefficient the situation is reversed

With the performance of the estimator revealing quite a bit of variability,

but on the average settling down to a good estimate. This contrary

behaviour is echoed in the other designs.

The proportion of times that the 't' ratio falls within certain

intervals For each type of statistic is given in Table 4:2:5. The

appropriate number of degrees of freedom in 145 which is approximated by

the entries for infinite degrees of freedom in Table 4.1.1. The results

are tolerably Close to the theoretically correct proportions except for

the Path Coefficients which seem slightly more spread out than a true

t-distrihution.

Table 4.2.5 Proportion of Times that 't' Ratio_Falls_Within Selected

Intervals (SRS samples)

Statistic 2.576 *1.960 *1.645

Means: 0.992 0.936 0.872

Correlation Coefficients 0.984 0.944 0.896

Path Coefficient§ 0.978 0.933 0.853

Multiple Correlation Coefficients 0.973 0.947 0;893
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Table 4.3;1 Average Deft Estimates (SCL samples)

Average 'N' was 145.00

Percent error
Statistic Empirical Estimated of estimator

Means 1.4973 1.81Y3 21.0

Correlation Coefficients 1.0098 0.9676 -4.2

Path Coefficients 0;9998 1.0022 0.2

Multiple Correlation Coefficients 0.6782 2.6529 291.2

4;3 Results for the Clustered Designs: SCL and CLS

As these two designs are identical except for the relative sizes and

nature Of the elUsters, their results are best considered together. Deft

estimates for the two designs are listed in Tables 4.3.1 and 4.3.2: one

is immediately struck by the huge overestimate for the Multiple Correlation

Coefficients. The other statistics seem to be reasonably well estimated.

The probabilities given in Table 4;3;3 arc, except for the Multiple

Correlation Coefficients just a little worse than those for the SRS design.

Note that the basis of the calculation of these probabilities is different

from that used for the previous design as there is now only five degrees of

freedom involved in the variance estimati3n formula.

One way of considering these results is to calculate the 'effective

sample size' fOr the two designs (Kish, 1965:259); This is the size of a

simple random sample over the same variable which would give standard

errors of the same size as were found here. Ross (1976:8) has given an

approximate formula for the effective sample size in the case of the Mean.

If the population size is large compared to the sample size n, then the

effective sample size n* is given by

n*
Doff

n

Using this formula, the effective sample size for the Means in the SCL

design is approximately 65, and for the CLS design, it is approximately 30.

This certainly provides grounds for explaining the lowered performance of

,--,Av,:Ci-sy66ri4t estimator in the case of Means. Unfortunately no such formula
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Table 4.3.2 Average Deft Estimates (CLS samples)

Average 'N' was 144.96

Percent error
Statistic EMpiriCal Estithated of estimator

Means 2.2068 2.4424 10.7

Correlation Coefficients 1.2173 1.1047 -93

Path Coefficients 1.1664 1.0739 -80

Multiple Correlation Coefficients 1.1080 3.4081 207.6

is available for the other statistics; although one might speculate that

n* for the more complicated statistics would be closely related to n* for

the means if this is true then perhaps an explanation could be put forward

for the poo= behaviour of the estimator in the case of the Multiple

Correlation Coefficients on the grounds that, with an effective sample size

of 65 or 30, Multiple Correlation Coefficients themselves have little

meaning or stability, and hence, the calculation of sampling errors is not

warranted.

The bias and variance contributions to RELMSE are given in Table 4.3.4.

The situation as for defts is reflected here: the results for the

statistics other than Multiple Correlation Coefficients are reasonable but

not so good as for the SRS design, and they are generally similar for both

Table 4.3.3 Probability of an Incorrect Statement About the Statistics

in the-W-L-an-d-M;---Design-s-

Probability of incorrect
statement when a two-sided
95% confidence interval is
to be used

Statistic SCL design CLS design

Means

Correlation Coefficients

Path CbefficientS

Multiple Correlation Coefficients

0.027

0.057

0.050

<<0.001

0.036

0.067

0.064

<<0.001
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Table 4:3.4 Bias and Variance Contributions to the Relative Mean Square

Lrror for the Statistics in the SCL and CLS-Ilesi-gris-

Statistic
Relative
Bias

Relative
Variance

Relative Mean
Square Error

SCL Means 0.111 0.165 0.275

CLS Means 0.030 0:094 0.125

SCL Correlation Coefficients 0.020 0.094 0.114

CLS Correlation Coefficients 0.021 0.100 0.121

SCL Path CoefficientS 0;013 0:098 0.111

CLS Path Coefficients 0.011 0.096 0.107

SCL Milltiple_Correlation 12.6 3.8 16.2

Coefficients

CLS Multiple Correlation 7.8 2.5 10.2

Cbefficients

de:tighs. The size of the RELMSE for the Multiple Correlation Coefficients

implies that no credence could be given to the values obtained.

Table 4.3.5 gives the proportion of times that the 't' ratio falls

within certain intervals for each type of statistic. The appropriate

number of degrees of freedom is 5 and the theoretically correct proportions

are given in Table 4.1.1. The Multiple Correlation Coefficients do not

Table 4.3.5 Proportion of Times that 't' Ratio Fall_s__With_in_Selected

Intervals (SCL and CLS samples)

Statistic ±2.576 ±1.960 ±1.645

SCL Means 0.976 0.904 0.848

CLS Means 0.968 0.920 0.888

SCL Correlation Coefficients 0.952 0;904 0;840

CLS Correlation Coefficients 0.932 0.856 0.796

SCL Path Coefficients 0;960 0;916 0.880

CLS Path Coefficients 0.960 0.876 0.804

SCL Multiple Correlation Coefficients 0.880 0.856 0.827

CLS Multiple Correlation Coefficients 0.920 0.880 0.867
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Table 4.4.1 Average Deft Estimates (STR samples)

Average 'N' was 144.S6

Percent error
Statistics EMpitital Estimated of estimator

Means 0.7419 0.5629 -24.1

Correlation Coefficients 0:7700 0.5120 -33.5

Path Coefficients 0.8532 0.5446 -36.2

Multiple Correlation Coefficients 0.7203 0.6527 =9.4

seem quite so disastrous in this table; but in fact the averaging process

hag concealed three extreme results. The other statistics seem to be

giving a reasonable approximation to a 't' distribution with the case of

the Correlation Coefficients in the CLS design being more spread out than

the rest.

4.4 Results for the Stratified Samples: STR and WTD

The deft estimates for both these designs are given in Table 4.4.1 and

4.4.2.

For all cases but one the Woodruff estimator is considerably lower

than one would wish. When this is converted to a probability statement in

Table 4.4.3 the interpretation is clear. With the possible exception of

Multiple Correlation Coefficients, the Woodruff estimator is considerably

biased; These calculations were carried out on the assumption that the

appropriate number of degrees of freedom was the number of samples cases

minus the number of strata; this is the way that Frankel calculated degrees

of freedom in his study (Frankel; 1971:79). He expressed the situation as

'the hypothesized degrees of freedom are H, the number of strata ..' which,

as he was working with only two cases per stratum works out to the same as

the usual formula. Suppose however that the quoted hypothesis were correct

no matter how many cases there were in each stratum. If this were true,

then the ;.babilities would have to be recalculated on the basis of only

three degrees of freedom. This has been done and the results are shown in

parenthesis beside the original figures in Table 4.4.3. These latter

results are more reasonable than the former, but are still not very

encouraging.
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Table 4.4;2 Average Deft Estimates (WTD samples)

Average 'N' was 146.06

Percent error

Statistics Empirical Estimated of estimator

Means 2.6408 1.0809 -59.1

Cerrelation Coefficients 1.4477 1.0084 -30.3

Path Coefficients 1.11680 1.9428 -29.0

Multiple Correlation Coefficients 1.2249 1.4317 16.9

An alternative exploration of these poor STR results is to consider

the number of cases used to estimate the U-statistics within each stratum.

Table 3.2.3 indicates that 103 cases from stratum 1 were used; 34 from

stratum 2; and only 13 from stratum 3. When using the Woodruff-Causey

program in its stratified mode, separate estimates of all the derivatives

lire made for each stratum for each relevant variate. There is only one

such variate for each of the Means, but there are five for each of the

Correlation Coefficients and up to 20 for the Path Coefficients and

Multiple Regression Coefficients. It would seem a dubious practice to

calculate 20 derivatives from as few as 13, or even 34, cases. One solution

to this problem would be to run the program in its population mode, making

appropriate corrections to the variance subroutine.

Table 4.4.3 Probability of an Incorrezt Statement About the Statistics

nhe STR and WTD Designs

Statistic

Probability of incorrect
statement when a two - sided 95%
confidence interval is to be used

STR design WTD design

Means 0.137 (0.095) 0.422 (0.283)

Correlation Coefficients 0;193 (0;125) 0.173 (0.113)

Path Coefficients 0.211 (0.135) 0.164 (0.109)

Multiple Correlation Coefficients 0.076 (0.063) 0.022 (0.034)

Note: Results calculated on 3 degress of freedom are in Wentheses.
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Tab le 4.4.4 Bias- and _Variance_ ContribiitiOnS__te the _Re lative_Mean_SZpare

Error for the Statistics in the STR and WTD Designs

Statistic
Relative
Bias

RelatiVe
Variance

Relative Mean
Square Error

STR Means 0.069 0.001 0.0-1

WTD Means 0.308 0.003 0.311

STR Correlation Coefficients 0:116 0.003 0.119

WTD Correlation Coefficients 0.102 0.008 0.110

STR Path Coefficients 0.132 0.004 0.135

WTD Path Coefficients 0.088 0.012 0.100

STR Multiple Correlation 0.297 0.091 0.388
Coefficients

WTD Multiple Correlation 0:510 0.354 0.865
Coefficients

For the WTD sample design there were 50 cases for each stratum. ThiS

may well be insufficient for good results. The effect of the weighting

process on the Woodruff-Causey program may also be quite negative. However,

t: evidence is insufficient to make any firm conclusions.

The relative contributions of bias and variance to RELMSE are given

in Tdble 4.4.4. The variance contribution, except for the Multiple

Correlation Coefficients, conform to the pattern of the SRS samplei whilst

the bias contributions are quite uniformly high. The high variance

contribution for the Multiple Correlation Coefficients is an interesting

counterpoint to the relative accuracy of the deft estimates.

The proportion of times that the 't' ratio falls within selected limits

is given in Table 4.4.5. The STR results here bear out the speculation that

the appropriate number of degrees Of freedom could well be as as three.

There seems to be no recognizable pattern to the WTD results. Once again

the Multiple Correlation Coefficients successfully avoid fitting what

little pattern does emerge here:

The poor results for multiple correlation coefficients were not

unexpected. The simulation study by Frankel (1971) also produced poor

sampling error estimates for all three single - sample techniques under

investigation. In a later paper, Kish and Frankel (1974) attribute

this poor performance to the problem of using the multiple correlation

coefficient with mnItinomiai data (Kish and Frankel, 1974:19 and 35).
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Tab le 4.4,5 P ropor non- of -Timesthat t ' Ratio Palls _Within _Selected

14 e -vals (STR and WTD Designs)

Statistic ±2.576 ±1.960 ±1.645

STR Means 0.952 0.912 0.808

WTD Means 0.696 0.600 0.560

STR Correlation Ccefficients 0.912 0.812 0.712

WTD Correlation Coefficients 0.876 0.812 0.732

STR Path Coefficients 0.880 0.764 0.681.

WTD Path Coefficients 0.916 0.809 0.729

STR Multiple Correlation Coefficients 0.760 0.733 0.707

WTD Multiple Correlation Coefficients 0.880 0.787 0.747

45 Comparison with other Single-Sample Techniques

Ross (1976:46-50) used two other single-sample techniques to estimate

sampling errors. For the CLS design he used a Jackknife technique. The

results are given in Table 4.5.1. These results ShoUld be treated with

caution as they are derived from only one example of the CLS design.

On comparing the percent errors in deft with those found for the Woodruff

technique, the Woodruff technique appears perhaps just a little superior.

Turning to the results for the WTD design in Table 4.5.2, the results for

both techniques are so poor that comparison is not rewarding.

Table 4:5A Results of Application of the Jackknife to One_ Example

of the CLS Design: Deft Estimates

Statistic Empirical Estimated
Pertent Error
of Estimator

Means 2.80 3.09 10.4

Correlation CoefficientS 1.53 1.63 6,5

Path Coefficients 1.47 1.53 4.1

Multiple Correlation Coefficients 1.31 1.44 9.9
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Table 4.5.2 ReAilts-e-f AR:till-Cation of BalancedRepeated Replicatian

Deft Estimatesto an Example of the WTD Design:

Percent Error
Statistic Empirical Estimated of Estimator

Means 7:89 4;12 42.6

Correlation Coefficients 1.85 1.66 -10.3

Path CoeffitientS 1.73 1.63 =5.8

Multiple Correlation Coefficients 2;14 1.20 -43.9

(after Ross, 1976:47-50)

4;6 Summary

The Woodruff-Causey program has been found to give accurate and stable

estimates of the statistics in the SRS; SCL and CLS sample design; with

the exception of the Multiple Correlation Ceefficients in the two

clustered designs; This exception is troubIestwe as educational researchers

would usually not have the means of checking that the sampling errors

generated by the program had not 'inflated' as they did in this case.

The results for the stratified designs were n)t so encouraging

although the fact that most of the estimators were quite stable leads one

to suspect that it may be possible to arrive at some bias correction factor

With further work. The poor results all occurred in cases where there was

some support for the idea that the samples sizes may ho.ve been unreasonably

small. This raises the point that this technique is no a way of

compensating for inferior sample design. If anything, accurate sampling

error estimation for higher-order statistics requires bettep samples than

those found adequate to estimate the first-order statistics.
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CHAPTER 5

CONCLUSION

In this study an empirical sampling approach has been used to assess the

accuracy of an approximation technique for the estimation of sampling

errors in several sampling situations commonly used by educational

researchers. The investigation was limited to fbur types, of statistics

used in correlational and regression studies - the mean; correlation

coefficient; path coefficient and the multiple correlation coefficient.

When applied to the 5inlple randOm sample situation and the clustered

designs, the technique provided useful estimates for all the statistics

except for the multiple correlation coefficient; the problem of sampling

error estimation for this statistic has been noted in previous research

(Kish and Frankel, 1974:35). The quality of the estimates declined

conFiderably however for the stratified designs; this leads to speculation

that the technique might only be reliable in cases where the minimum size

Of the strata is reasonably high.

Table 5.1 gives some indication of the importance of finding a

successful solution, or at least an arsenal of strategies to cope with,

the problem of estimating sampling error. Here are displayed the prob-

abilities of an incorrect statement under a 95 per cent confidence interval,

which would hold if the design factor were to be ignored: note that in

such a case the researcher has assumed that simple random sampling gives

an adequate approximation to the sample design which was employed and hence,

that all these probabilities are not too far from 0.050: Patently, any

inferences made under these assumptions will be entirely untenable for the

SCL; CLS and WTD designs, whilst for the SRS and STR designs, the simple

random sample assumption has led to rather conservative confidence intervals.

The Woodruff-Causey program has been shown here to provide a signifi-

cant improvement on this performance for cases where the effective sample

size is not too small. The program can give an estimate of the sampling

error for any statistic which can be expressed as a Fortran subroutine;

the user need only supply this subroutine and, depending on the circumstances,

a subroutine to estimate variance and a few data-manipulation subroutines.

For more standard situations several less flexible but less demanding

programs (which were mentioned in Section 2.6) are now available.
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Table 5;1 Probability of Incorrect Statements When the Design Frctor

is Ignored

Design

SPS

STR

SCL

CLS

WTD

ProbabiIity_of incorrect statement when a
two-sided 98% confidence interval is used

Means

0.05

0.03

0;21

0.48

0.50

Correlation Path
Coefficients Coeffidients

Multiple Correlation
Coefficients

0.03 0.05

0;04 0.04

0:09 0:09

0.20 0.18

0.29 0.26

0.01

0.04

0.07

0.13

0.36

Note: The fist row is taken_from_Table 4;2;3 of this study; the rest
are taken from ROSS (1976:39-4S).

In common with these other programs using the Taylor's series approximation,

the Woodruff-Causey program enjoys the advantages of a relatively high

computational speed and transparency of assumptions. However, it also

handsomely repays the demands it makes on the skills of the researcher with

the marked flexibility it displays in handling diverse sampling situations

for estimating the sampling errors of almost any statistic imaginable and

in its adaptability to quite small computer installations.

The results have indiLrted the need for further evaluation of the

technique in situations where larger number of cases are involved especially

for stratified and weighted sample designs.

Although the results of this study are only empirical estimates based

on particular sampling schemes and for particular statistics, the pattern

Of teSUltS is most probably applicable to a wide range of studies undertaken

by educational researchers. Considering the broad range of possible sample

designs and statistical analyses which are available to the educational

research worker, it would seem doubtful that a comprehensive theoretical

solution to the problem of sampling error will ever become available.

However, the problem is with us now, and approximation methods such as the

Woodruff-Causey pro,..,ram, if used cautiously, have been shown in this study

and elsewhere, to gixe stable estimates of the often large sampling errors

present in educational research data.
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APPLSDI1( J

NU I) DIFFERENTATION

If f is the statistic under investigation using the Woodruff-Caut.'y

protraM, then one of the important steps is the evaluation by numerical

methodS of the partial derivatives,

Df(V V

V

.. --r)2
i

V.
=1,

At the expected values of the sums of the variates V1. In fact, these

expected ValucS can be evaluated only by using the actual sample values

vi; vr The expression used to find the partial derivatives is

f
n

= fzn
3 '1; v2 .. vi ,4h v

for i=l, 2.. r

1
v

(I)

This is a straight - fort :ard application of the usual dt5initiOn of a

partial derivative:

of lim 1

avi fr.° 2h
v v, vl+h f (vi , v2 .. v4.-h

(2)

difficulty in applying tic upproximati.)n (1) is in choosing a

suitable value for h. This ii found by censidering the possible errors

involved in the approxiatiOn.

It may he (Hcnrici. 1964:256) that the elror involved

in the approXimation is

h' fr"M Nhere f' is used to denote the rhecretical first
derivative, etc)

51



1

Where vi =h < tyc v.+h. In addition, one gust consider the rachint-

etrer in the calculation of v,+h and v -hi which is approximately

boundedbydv.f' I P, Where P = 1041 and M is the number of

significant figureS Used by the machine. When these values arc used

to find the two estimates of P. a further error bounded approximately

by

f(vi, v2 .. vr) P

is also involved (Woodruff and CaUSey, 1976 : 321). For a non-zero

partial derivative, the relative error is then bounded approximately

by

(3)

Obviously, as h gets smaller the first term will decrease but, since

P is fixed; the second term will increase. Thus the strategy is to

choose h as small as possible without

fT

becoming to large. The program uses an iterative procedure to find an

appropriate h according to the steps outlined above and, of course

uses fn to 4proxitate f'. The only extra problem Occurs whire f'

is either zero or very near tv it: in thiS case the iterative

procedure is very slew with the possibility that h Would need to be

very large before

)f 1

becomes -hall. To circumvent this problem, is set to zero when h

-v, -

exceeds 100C
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APPENDIX K

A USER'S GUIDE TO THE WOG5RUFF=CAUSEY PROGRAM

FOR TILE COMPUTATION OF THE SAMPLING ERROR OF

COMPLICATED ESTIMATES

Tice following user's guide has been written in an atterpt to 'soften'

the rather techaical docementation which accompanied the program

(C:asey, 1976). Potential users must be warned however, that only

those with more than a beginners knowledge of Fortran should attempt

to use the program. Although the program demands some writing of

Fortran subroutines, the user will find that such efforts are well-

rewarded; for the program exhibits great flexibillty not only in

the type of sampling problem it can handle, but also in the procedures

it uses to solve the problem. Furthermore, in'an environment w;!ere

particular sampling situations wore the norm, it txuld not be difficult

to set -up the program to handle such standard situations without

the need for subroutine writing. The following is bared on the

technical documentation which accompanied the program; any errors

are, of course, the responsibility of the present author.

Kl A Worked Example

--4tle example which'f011ows was chosen as one that would indicate

the steps necessary to use the Woodruff-Crusty program, and yet

be simple enough to provide an introduction co the technique;

Consequently issues such as weighting, the use of temporary storage

space; and the use of a user - written variance subroutine are left

to the formal. description of the program in Sections 1;4 and KS.
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K1.1 The problem

Suppose a researcher wishes to investigate how ambitiouS are

young secondary students, d how this might relate to their

ethnic origins. Some data is collected consisting of the

students' opinions as to their later occupations, the present

occupations of their fathers, and the language spoken in the

home. The data are coded according to Table K1.1. The scale

of occupational prestige is the six-point ANU scale (Broom

et al., 1977:112). In order to make the occupational

prestige scale amenable to a product-moment correlation

investigation, the occupational categories are transformed into

an approximately interval level scaled score as in Table KI.2.

Iabie K1A Format of input Data for 'A Workei! Example'

Columns Format Comments

1-3 13- Identification number

11' Six-point scale of czcupational
prestige

Six-point scale of occupational
prestige

Ii English spoken in parental home
1

A language other than atglish
spoken in parental hcime = C

Missinsdata 2
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Table K1.2 The SixPoint ANU- Scala of Occupational Prestige

Occupational grouping.. Rank

Professional. 1

Managerial.

White Collar 3

Skilled Manual 4

Semi-skilled Mtnual

Unskilled Manual 6

Missing Data 7

Weighted Social status score

662

611

508

48S

421

418

An index of ambition .;cs formed in thE following way; If of and

f, are a student's scores on EXPOCC and FOCCUP respectively,

then define a.measure of ambition as

Then if e
i
is the sldent's score on ENSPIDDE, find the product

moment correlation

r
a

11

n Ea e

i=1

n . n
(N''''.2. -2
a , -a m A n '',) -e, ne

iel IL,:i

where the nuMbor'of Sample,

a it tne.averale of a-.

and - et- is the average, of the ei*

For this dial, the meat of the aiis.feund to be S6i24 and

the-correlation, betweest.the.a- end-the'ir
.

. -. .. .

The iimplim scheme used to. collect the data was-a simple.
.

randoi temple of 600 cases-with_re-laCement, so the usiie/'.-:

SS



estimator, of sampling error can be used, that is,

,

for the averagt. of the hi-

-

for the correlation coefficient

where s is the standard deviation of the a:

within the sample;

For the data, these take the stalues 3.95527 and 0,0436021

respeCtively, when all cases with any missing values are

deleted; Thus 'f he correlation between ianguage spoken at

home and thii index of ambition would seem to be weak but

non-medom, at least at a.95 per cent confidence level,

However, -.;he researcher is, quite understandably, eracerned

with the use of error estimates which involve assumptions

of normality when cne of the variables it clearly not normally

distributed:The Woodruff-Causey program can be used to

claify the sit

.

K1,2 541ving-the-problem

The 1::-;gran is capable of solving this problem in a number of

!,uperflt:ely different ways.. The actv41 manipulations of tha

data will '..;a; thsalloo i.4s.caeh[vessible wrangement, but the .

war; fn waL,:.V%t.e contr, information ant: che data are fed

markedly;The p'Dgrara will alwayi

-11g-types ;.-:f*.I.iformatiOn in S'Nwi: way, ;

-;tra;,a t.se sand°, and tain

.0: .2ach
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2 The number of fUnctioni to be investigated, and a

'formula'. in the form of a Fortran segment for each
. .

3 The numbei of variates involved in the investigation,

an indicator of which variates are relevant to which

function, and the actual data on which the investigation

is to be made.

4 Auxiliary information such as extra output, tempera

storage, mi.c.

One particular way of solving the problem is descrV--1

A solution starts with the 'Problem Card'.

The program interprets the information contained en that card

in the following way.

1 A value of 1 in columns 1 to 4.

This means there is only one stratum to consider.

A value of 2 in columns S to 8.

This means there are two functions whose sampling

errors are under consideration;

3 A value of S in columns 9 to 12;

This means there are five variates involved in flu,-

problem.

A value or 1 in colum 13.

This Means that the program rust look. to subroutine

ssrur for stratum'information.

A Vali* Of 1 incolumn 10.

;'This.means.that.the.prograni must
_ _ -

wispur for the date..

57



I

6 A value of I in cOlumr. 20.

This means that certain information concerning each

derivative is to be printed out

7 A valueof I in column 35.

This means that not all the variates are involved in

all the functions.

One important point rust be made, the Fortran function F

must calculate the functions under investigation using not

the individual values of the :/ariabZi7J, but the sums.over the

entire population of each of the vart:tv:ee. The distinction

is important, the variables are the measures which are under

in gation whilst the variates ate the variables plus

certain transformation of the variables which will be needed

in the calculation of the function. Thus, in this case the

variables are as given in Table KI.I, but the arittes; which

are the values to be read into the program, are quire different.

In order to calculate the two functions, the following five

sums arc needed:

te2
1:i' i' 3 i' P 1i i

Hence, for each case the input data must be

2 2
e1, e1, a. ai, a.

1, i'
e
i

In general there will be more variates than variables. The

composition of this list of variates is not unique. For

instance, in this case it would have been quite possible.to

write a Fortran function which calculated the mean an.l

correlation coefficient in terms of the following set of

S8
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viriates:

2 -2
a., a.e.

11.

HaVing deSeribed how the data is to be treated on this

probl"a card, the user must then write

se;;mcnts; always a Main Program and a

several Fortran

function; F, and, if

the user has so inLncated on the PrLiem Card, any others

which are necessary.

The Main Pro7ram. This is used to starc'the prOgrant

executing, to reserve dimensional array space and c0-=non

PROG7lArl

DINESS10q AL1L21;0001
DOU:LE bC151
laThENSIGil 1XiD,U1i400,:)
CO'ciiiOr;;CilfinW/Ula3

R540
1=1

WilTE(.1,2/

2 FOFaiAT1* S;.;;;LE VARIA;;C' Fug DTAT EXAaLE1
DO SO g=1,600
AEAD1Si10) CONT11-,I1=1,31
FO;iiATi3X43I11

1F(IX11):1:0;?i S3 TO SO
1711Xi2).EO.ii G3 TO SO
INIX131.E.Q..?il GO 70
DO 20 .1=t,.2

IF1Iktil;ED.1/ IXTJ)=682
1F11X1.D.E0.2i TX(J):611

1Xid)=SOO
li,(J)=435.

IF:TX1J1.E3.S1 TX1-421
IFTIXiJi.i0.4!

20 CCO:6U'__
U1iI,;WICATil.(131)_
111(ii2)=Iii(Ii11.6(10)
511( 1;3)-FLOATZIX12).-FLX.T(iXi1)/

Ui(le1)=1:1i:,314111(I,Si

Ultljd=41(10,411111,3)
6E141
la1+1

:5 CVIOJE
i:SEL

e0 FO;a417('

STOP

Figure K1.1 Pr,::rall DINKY-

SO

riet!ra s:lce for ct%tq

(See ,3.2.1)

C: :n fcr glz.PV

r.:ck fcr NST;AT

celecion of

t,ttE .; cats

a-i;v!eticri of voi461,:s

r::co ane EinGC to r3111

v.te intovval levil

fderti:n cf Vte orktes;
tier :re :t; ed in

itt:inl trTO Gf nurbte

of cases ntt mem

... ra ccatrol to r it.



blocks for later subroutines, to carry out any calculations

which need be performed only once, and to call the first of

the supplied subroutines, PREPAR.

Note that data cases with missing values arc eliminated

entir,:.'y from the calculations. This is necessary as at a

later stage a linear comb nation of the variatcs is to be

calculated for each case (the result of this operation is

called a 'U- statistic');

Subroutine WINPUT. This w:s requested by the fifth entry

on the Problem Card. Its function is to supply the five

variatcs, one case at a time, to PREPAR. In this example

the variates have been placed in the Common block CO}' ti by

the Main Program, so all t.iat this subroutine need do is

t:ansfcr the cases in the correct order back to- the calling

SUrOUtine through the argument W.

SUBROUTIWE UINPUTCW,U)
DIHEKSIOli 1111600,5,U(N)
COMMGW/COMUAJI,K3
K5,i141
DO 10 JAli5 _
U(iii1111:3,J)

10 CO6T7NUE

Eslb

Figure K1.2 Subroutimt WI PUT

Subteuine-N&TRXr. This was requested by the fourth entry

or, the PrbbleM Card. Its function is to supply four pieces

of in'Arhation fur each trat,-rs to the calling subroutine:

The :nformatie nCeded is M, the number of cases in the

stratuM, 'FR', the sampling fraction, 'NT', the total number
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Of cases (which should be se: to zero if FR is supplied) and

a quxitity named IV which tells the program how to estimate

the variance. In this case, there is only one'stratum, the

number of cases has been placed in Common bloCk MAW by she

main preg.-am, the sampling fraction is 0.0 since we have

sampling with replacement, and the value Of IV is 0 Which

indicztes that the program is to use its default simple random

sampling variance formula.

SUBROUTINE RSTRAT(I,A,FR,NT,TV)
COONON:COOON/WLEL
N.USEL
FR-4.0.

IV=0
RETUFR
EaD

Figure K1.3 Subroutine 11!.I2AT

The Function F. This must always be supplied by the user.

Its purpose is to calculate the functions under investigation

Using the variate suns (which in this case are contained in

the firSt argument, T) in the order in which they were

supplied from IMPUT. The number of the function is

supplied by a Common block called COMMF which is defined within

Subroutine CENVAR. This function is to be calculated using

double precision wherever possible.

61
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DOUiLE FRECISIOR FONCTIOR FIT,WT,S,MS,U3,R,WR1
LOUIE PRECISIO4 TO1),503,U3),R(,JR)
DMA fRiX1SIOR FUR(2),0(21
COahON/CWeiL
EOKKO)(iCOWA4
FUNI1/4(3iitiFl0ATIN)
IFit.I0:1) SO 10 99

mo'lL-NUAliR)47i2)-7(I)0T(1)
%.7).T41041iiliT(4)-7(3)i4i5)

FUN(2):CieFLOAtti0,;(:;1-Tt1),-Ti3)1iL3ZI;T(V(1).212
99 IWU*itt)

iv,tN

EkL

Figure KI.4 The Function 'F'

The 4obrauzrine-NSUBFV. This sul7reu:ime is requested by the

last entry on the Problem Card. Its purpose is to inform

the grogram of which variatcs are involved in the calculation

of each function. In this case, function 1; the mean;

involves only variate 3, Wherevs function 2; the'eorrelatiOn

coefficient involves all of the variates. The subroutine

has three arguments; the firSt is the number of the funeiton, L,

the second is the nuMber of the variate, J, and the third

is a value to be supplied, Which equals two if the variate J

involved in the calculation of the function L, and equals

one if it i net involved.

SUSIIGUTINE NSUBFV(L,J,IFV)
IFV=1

IF(L.E2.2) Ir/g2
IF(J.E2.3) 1FV=2

ER0

Figure KI.S Suhroutine-NSUCFV
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The Dummy Subroutines; Although they are not involved in

this examp;e; the Fortran

require the following two duMmy subroutines.

compiler at many installations will

SUBROUTINE VARNCE

RETURN

END

SUBROUTINE ;;SUBHV

RETURN

END

(TM,I,S,N,F,R.Q.INV)

(1 ,J .
)

The first would be needed if the user wished to supply a

different variance formula from the simple random sampling

formula (which is a default); The second perforMS

similar function for strata as NSUBFV perfortt for variates.

The cniprlied_SUbroutin-es. The 'program' as sup icd consists

of the three subroutines PREPARE GENVAR, and SWITCH. These

need not be iltcred.

The-PTinted Output. The printed output from this example

is given in Figure X1.6.

LA7FLE VA;IA4CE FW% EAA;I;LE.
HSEL S26
DIdE11310 Lin1T5 AWE 2648 7

DER1VATiVE3 ilJn FU6CTION
3 3 4.1;01140;Z-02 MP/00611-03

7U4CTI70 1

14A1VAT17E5 7a;

0.SS:37440E,02 0.156455?1E2 0.3i5525SSE01 0.7453075M-01

I 3 -0.67Y:4047E-02 0.16;500M-04
2 5 0 .13:4O771E-02 0.161:047.7i1-04
3 i -0 .1077124E-04 0.71c10.,607,-03
; .3 0 .1220043;E-07
5 3 0 0.34:2;701D-03

2 -4.10S 41461E400 4.177:72;0E-02 0.4213i:00Z-01 0.3777413:E404

Figure K1.6 The lIutmt from Exampl_t_DINXT
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'NSEL' is. use number of cases left after list-wi!..e deletion.

The 'DIMENSION LIMITS' are the reqUired minimum dimension

sizes needed for the arrays A, N and prespeetivoly, of the

Hain Program. The deriVative information for each function

consists of the number of the variate involved, the number of

iterations needed"to achieve stability, the value of the

derivative, and the final inertmeht.

hl, information given for each function is

the oumber of the_function

2 the estimated value of the function

the estimated variance of the function

4 the estimated standard deviation of the function

S the coefficicat of variation (i.e. (4) divided by k2))

The results indicate that the standard error for the mean
:

given. by the usual formula was as accurate as one could

-
ever expect, but then its accuracy was not in question. For

_

the corL'clation coefficient, however, the program has revealed

a 3,5 per cent inaccuracy in the estimate of error. given
.

by the usual formula; It As:InstructiVe eoreoever that this

inaccuracy does notalior.tho'earlier verdict regarding the

correlation coefficient. -

. _ .

-"For a certain ropujation, consi4or.V variates totals

Y2 w YllOvnr.thopopulation which-Are'conbined in some=:



way in a function F of all V variate totals. The goal is to

estiroite Var (F).

Suppose a sample is now drawn from the population and in that

sample Xii is the value of variatc i for case j. If, furthermore,

P. is the probability Tior to inclusion) of j in the sample,
3

let

and then

3=1

when n is the total number.of cases in the:sample;

is an est'limator of the population sum.

This allows one to estimate

F Y2 ... Yv) with

The first-order Taylor Expansion of F about F is then

F
2

F Di i.

:iml.

where Di is the derivative

aF
ayi

evaluate-1 at (Y
A 4

w
Vat. (F) is approximated by Var (F) which is then approximated

by Var (F2).
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The variance of F given by

Var(I: . .D Y ) = Var(

i=1 1=1
1 13

pa'

_v_

= Var(EE
j=1 i=1

= Yar(E
j=1

where U WD1 ..
ij

1=1

These U;'s are called 'U- statistics'.

The variance of this total is found in the same way as one

Would find the variance of each i, considering the original

-sampling scheme. Where the sampling scheme was siplple random

sampling the appropriate variance estimator is

n

U,)

j=1

(1

n - I

where f is the sampling fraction

And 11 is the mean 'U-statistic'.

This formula may be chosen as a default in the program;

The calculations may be performed using the weighted Nos or

the unweighted X's.
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K2,2 Independent Strata_

If the sampling within each stratum is independent of the

rest; the above process may be repeated within each stratum.

Let H be the number of strata: Use the tubscript 'h' to

denote that a certain variate or statistic pertains only to

stratum 'h'i and the above formulae may be rewritten to

describe the apolicatic of the proceSt to a stratified

situation; The variance estimation forMUld for siLple

ranaoM sampling within each stratum :becomes

±h
(I -fn)

Var( Hill ) =
_

- 1)
j.1

K3 Formal Description_o_f_th,e Use -o-fthe Program

The required inputs to the program :re of three types: first a

'Problem Card' tells the program the type of problem under

consideration and the way in which it is to be handled; second;

a main program and a series of subroutines must be included with

thu source deck; third; the data must be provided in the various

ways specified in the Problem Card.

0;/ The Problem -Ca -rd

The information concerning the type of pioblem to be

investigated And the way that the user wishr$ it to be handled

is supplied to the program in terms of numbers punched on the

Problem Card; This card should be left blank unless otherwis

indicated; There are seventeen such numbers and the user will

be referred to the information immediately below by reference

to the names 'PC1'; 'PC2' ;.. 'PC17' which indicate their

67
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sequence on the Problem Card.

X3.13 A_Columm-by-Coiumn Commentary;

PC1 Title: Number of strata Columns: 1-4 Format: 14

Comments: This indicates the number, Hi of independent

strata. If there arc no strata, then H = 1.

PC'- Title: Number 0E functirs Columns: 5-8 Format: 14

CoMments: This indicates the number, C, of functions

for which variance estimates are desired.

7C5- Title: Number of variate Co;Lmns: 9-12 Format: 14

Comments This indicates the nulperi'V, of variates

which 7-et input as data to calCulate the

value of the functions under consideration.

Note that ti.;e number of variates will generally

be greater than the number of 'variables'

involved in the functions under consideration.

PC4 Title: Input Mode for Stratum Descriptors

Column: 13 Format: II

Comments: For cash stratum, the user must supply four

quantities: This eqtry t4.1s the program

where to look for them.

If they are to be read from cards, place a '0'

in this column.

If they are to be read from an unformatted

binary file, place a '1' in this column.

If they are to be provided froi a user=

written external subroutine NSTRAT, place

'2' in this column.

Details of the inputs to be provided by each

of thcse modes are contained in Section

The Stratum Descript
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PCS Title: Stratum Descriptors Input File

Columns: Format: 12

Comments: 'If tho value of PC4 is 'I' then the user
. ..

must here indicate eta interrel unit number of: f

the unformatted file on which ccIides the

Stratum Descriptor inforrat!ok...

If the value of PC4 isno: '1' then these

columns are to be left blank.

Of course tt_%1 user must ensure that this

internal unit number is not used in any other

part of the program.

PC6 Title: Input Mbde for Variate Values .

.

; - .

Columns: 16 Forma: II

Comments: For each sample unit in each stratum the user

wusr provide the V variable values. This

column tells the program where to find thea.

If they are to read from cards, place a'0'

in t' .5 column.

If they are to be read from an unformatted

binary file, place a '1' in this column.

If they wa to be provided .From a user-writtcn -

. .

. .

external sebroutine WItEPUT, place a A21ikthik-....,

r .
..



Comments: If tnc value of PC6 is '0' then the user

must here indi :ate the number of cards needed-

to give the format of the card or cards

from which the V values are to be read for each

sample unit in each stratum;

If the value of PC6 is '1' then the user must

here indicate the internal unit number of the

unformatted binary file on which resides the

Variate Values information.

If the value e7 PC6 is not '0' or '1' than these

cOlumns are to be left elank.

Of course the user must ansurethat this

internal unit number is not used An any other

part of the Frogram.

PC8 Title: U-Statistics Columns: 19 Foriat:

Comments: If the user desires a printout of the U-statistics

for each case, a '1' is placed in this column.

Note that these are printed in the format

10(1X. E11.6)

Thus the output file or printer must be

capable of receiving lines of 120 character?,

If the U-statistics are not needee-, leave this

cOlUnti blank.

PC9 Title: Derivatives Columns: 20 Format: Ii.

Commentt: If the user desires information concerting the

derivities of each function with respect to

the appropriate variates, a '1! is placed in

thit colm..n. The information consists of:

1 the huy+et of the vertAte involved in the

differentiation;

70
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4Forrnt'7177,101".7<:

the number of iterations involved in the

.

numerical procedure 0* denotes the

maximum of 8);

3 the value of the derivative;

4 the final increment used in the numerical

procedure.

This information is provided in 4S characters'

across each line;

If this information is not needed, leave this

column blank.

PCIO , PC11, P':".12i PCI3, PC14

Collective Title: Temporary Storage Columns: 21-33

Comments: These columns may be left blaA unless the

amount of space needed for storage of

imenSioned arrays, which isaiscus.led in

Section K3.2, is beyond the capacity of the

particular machine being:used.. if this is the

case, consult Section K4.

PC1S Title: Irrelcifant Strata Column: 34 Format: Il

Cottments: If all variatcs are defined for all strata,

leave this cOlumn blank.

If For some strata, certain_variates are not

defined, place a '1' in this Column. The.

user must then provide a user-written external

function NSUBHV Which informs the program of

the appropriate pair of variates and strata..

This is dettrirbed in Section K3.2.3.

Note that an alternative strategy is tosupply

a value of zero for thevariate in the relevant.
.

strata.: This will result in a loss of efficiency
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.

and may also lead to execution erTors.
.

PC!.6 Title: Irrelevant Variatcs Columns: 35 Foriat: 11
.

Comments: If, apart from the considerations of Irrelevant'

Strata (PC1S), allfunction4 are defined

using stratum totals of all, of the variates,

leave this colUmn blank.

If all functions are defined using population

totals of all of the variates, place a 12'

in this column.

If some variates are not involved in the
. -

calculation of sore functions, regardless of

:whether stratum totals or population totals

are used, place a '1' in this column.

The user must then provide a user-written

external subroutine NSUBFV WhiCh infers

the program of the appropriate action to be

taken with respect to each pair of stratum and

variate; This is described in Section K3.2.4.

Note that ar alternative strategy of allowing

the program to calculate derivatives of

irrelevant variates will resuln.a loss of

efficiency and may also lead to execution

.

errors.

Tho user must be careful at this point to

ensure

1 . that population sums or stratum sum= atp

used in the function F (see Section 0.2:2)

to correspond with what the user has :

.

indicated here,

72
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that the conditions indicated here do not

conflict with those indicated in subroutine

NSUBBV (see Section K3.2.6).

PC17 T!'16: Preliminary Run Columns: .TA. Format: II

Comments: If the user wishes to obtain lower bounds for

the dimensioned arrays discussed in Section

K32.1 without :.Inning thA entire program,

place a '1' in this criumn

This step will often not re necessary as all

that is aceded is to exceed these 'Amiss and

still remain within the available stnrrge

space.

K3.1.2 The Strattmv1DesoriTtars. For each stratum the

following information must provided

1 The stratum sample siz, N, in integer format.

:2 The stratum sampling fraction, FR in floating point

format. This is the ratio of stratum sample size to

total stratum size.

3 The total stratum size, NT, in integer format. This

value is used only to compute the sampling fraction. If

NT is set to zero, then FR will be used as the sampling

fraction.

4 A value, IV, which informs tho program of the mode of.

variance computation to be employed.

If variance computation is to be done, for the strutum.

under! consideration, using the intermat simple randos

sampling variance formula applied to externalty-weightea

data, then set 11: equal to 0.
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If the same procedure is to be follcwed, but the data

are to he internany-weighted, then set IV is equal to 1.

If the variance computation is to be done, for the Stratum

under consideration; using a user- written.cxternal

subroutine VARNCE applied to cxterftallv-wmighted data,

he set IV is equal to 2.

If the same procedure is to be followed; but the data are

to be in;crnally-waighted, then set IV is equal to 3;

Where no strata are involved, that is, where only population

values are under consideration, this information is to be

proVided as thc-ugh for Stratum one.

Note that if IV indicates inter a1- weighting all calculations

.

will be in terms of variate values divided by the probability of

selection within the relc -it stratum. If IV indicates

xternaZ-weighting the user may pre-weiaht all data before they

are input into the rrogrvc, or; if using an external subroutine:

VARNCE; the user may input unweighted data, and make

appropriate adjustments within the function and variance

subroutines.

The program finds this information in the way indicated by

the value of PC4: If PC 4 equals .sere, the information is to

be read from cards.. The first car. Must give. In columns 1

to 72 and in format (12t6), the format of the H cards, one per

stratum; providing for each of the H strata the four quantities.

The remaining H cards t!fjntaining this information then follow.

If PC4 equals I the four quantitles,are to be read (in R

groups of fowl from the unformatted binary the with internal

,nAirntr(1 by PCS. If PC4 equals 2 the four quantities
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are to be provided by the subroutine NS RAT which is described

in Section_K3.2;4. -

; :...'.
. . . .1 l'; . . , . '. -

. r
K3.1.3 The Variate Values. For each case in each stratum the'

user must provide the V variate values; These must be in. the

order of their relevant strata and exactly the number of cases

as Indicated by N must be present for each stratum; Furthermore

the user should ensure that the values are weighted or

unweighted according to the specified value of IV. (See

previouS section for a definition of N and IV).

If PC6 equals zero the user must provide a number of cards,

specified by PU (maximum : 2) containing the fOrmat

information concerning the cards from which the'V values are

to be read for each case in each stratum. The remaining cards

containing all this information, then follow.

4

If PC6 equals one, each set of V is to be read from an unformatted

binary file with internal unit nwber indicated by PC7.- If

PC6 equals two, each set of V is to be provided by the subroutine

WINPUT which is described in Section 3.2.5.

K3.1.4 Computational Efficiency. The program Way:be

instructed to disregard the input of data for certain strata

for certain variates (tee PC1S'and Section K3.2;6); it may.be

instructed to use only population sums, or to disregard certain:.

variates in the computation of certain functions (see 2C16 and

Settler' K3.2.7). On some systems these steps will be nereSsarr,:,

but on all systems they will enhance efficiency.

.

As a general rule computation will always -be faster when

population sums only are used, but als0 the w..'itine- of the..
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function subroutine will be easier and the numerical

computation of derivatives will be more accurate. Thus,

wherever possible, population suns should be used.

It was noted in the 'Worked Example' that cli:foret sets

of variates may be used to calculate the Where

this is the care of the sma1AC:;:t set of variates will give the

fastest solutions.

K3.2 The Main Program and the Subroutine

The user must.always supply a main program and a double-

precitlon function, F, in order to run the progam. Several

other subroutines will be necessary depending on the options

specified on the Program Card. On some installations' it will

be necessary to provide dumm, versions of these subroutines

even it they arc never coiled. The part of the program which

tieen supplied coasists of theca subroutines - PREPAR,

GER, and SWITCH - 141.1a must always be included in the

source deck and which are referred to collectively as the

'core subroutines'.

K3.2.1 The Main Program. The main program performs five

functions.

1 It begins the operation of the program; On some ;systems

this is achieved by making the first lin& a 'PROGRAM' line;

on others the system detects that it is a main program

:. simply by the absence of i SUBROUTINE or FUNCTION statement

at ;the beginn ng;

It reserves' sufficient space for the dimensioned arrays

which are to be used by All the subsequent subroutines.
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The amount of space needed by the ccrc subroutines i3

indicated below. If the space needed by these n!ibroutines

is not provided for in the main program; execution will

terminate and one of the core subroutines wir print out

the necessary dimension limits. If any of the user-

written subroutines require more space than is alraady

reserved; the user must make allowances for this in the

main program.

It can; beyond what is called for in the Pro'clem Card,

provide in advance data any of the user-written

subroutines; These could be read into inter3ocking

COMMON areas not named CC'-Z1F or PREPGN for use at any

subsequent stage;

4 It can be used to 'open= -ne close' flies: rewind

tapes; etc.

It calls the first core subroutine PREPAR.

The form of the main program is:

DIMENSION A(a),N(n)

DOUBLE PRECISION D(d)

L:LL OREPAR (A,a,N,n,D,d)

STOP

END

As previously noted; a first 'PROGRAM' line may be necessary

on some systems. 'A' is a real array, 'N' is an integer array,

and 'D' is a double precision array; they are of dimension
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a, n, and a respettively;. These dimensions are.act0a1_,- ,,,,r,

aumarical values. which may be found by making a preliminary.
. _

. . .

run with PC17.-, I (for this preliminary run theY may all be set....
,..

equal to, say, 100. Alternatively, 'oeunds may be

calculated by hand as follos:

If no temporary storage is called for (that is; all of

PC10, PC11, PC12, PC13, PCI4 are zero or blank)

and if

H number, of strata

V = number of variates

-

'.

. .

R = total number of sample cases for all strata
.

.K a number cl sample cases in the longest stratus

then

a 4 VR + +

n 4 2H + V

d VII 27

4V

Thes... hounds need only be exteedell'if the user.has written

subroutines which will use more diMensioned-array spaCe.

If population sums are used, or i2 the optional. printouri are
:

not called for, or if teMpiry storage on interaal'Units is

called-for; then mu* smallerdimension benalds

Exact bounds In these caies.may be found by consulting Section
.

K4 :.,The Problem of Insufficient S'orage..SpAce.:-.

K3.2.2 The FUhetlem'P. .Thi user .rust always':Oraddi a'doUble

I
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The form of the function F is:

DOUBLE PRECISICN FUNCTION F (T,NT;S,MS,NS,R,NR)

DOUBLE PRECISION T(NT),S(MS,NS),R(NR)_

COMON/CONZIF/L

RETURN

END

The arrays T, S and the common block CCF should not be

'altered in a problem needing no zmporary storage; If temporary

storage is used consult Section K4; The common block contains

L which is the 1.:::lber of the function to be evaluated. The

functjon is to be defined in terms of population sums which are

supplied in array T, or stratum sums which are supplied in

array S, whichever -,-71?-ropriate; Note that I is of

dimension V and S mension (H,V) that is, e4m:.!Ir.

SUM will be the stratLm sum for stratum I and variate J.

TWo possible pitfills should be noted. Firati if PC1S = 1,

then for some pairs the stratum sum S(I,J) does not exist;

if it appears in function F, its value must be set to zero.

Secondly, for each function, and for each variable, the

FUNCTION F must use stratum sums, population sums, or neither,

According to what is'called for by PC16 and SUBROUTINE NSUBFV.

)Z3 ;2 ;3 The Subl.outine VARNCE; The user need supply this

subroutine only if; for some strata, the internaIly-provided

.

Simple..tandem sampling formula is not appropriate. The

._ . - _.

subroutine is called for each stratum in order to provide the
.,:.-. ...,-

variance of the U.4tatistics.
. .
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The form of the subroutine VARNCE is

SUBROUTINE VARNCE (L,M,I,N,FR,Q,INV)

DIMENSION 'OD'

RETURN

END

The array T consists of the

stratum under consideration.

input data were unweighted,

U- statistics for particular

If the user incicated that the

(see Section K3.1 2) the U-statistics

will now be weighted. The other variables are:

M.: the dimmsion of array T

I : the stratum under consideration

N : the stet-im size

FR : the stratum samrIing fraction

INV : an internal unit number needed only it

.temporary storage is used.

The 7ariance contribution for each stratum is evaluated in

terms of the U-statistics and placed in variable Q.

If temporary storage has been called for -in the Problem Card,.

consult Section K4.

ubroutine-NSTRXr.

only if PC4 equal; 2. The

quantities N. FR, NT and

The user need, supply this subroutine

subroutine must Supply tho feur

IV for each stratum (see Section

`
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The form of the subroutine NSTRAT is

SUBROUTINE NSTRAT (I,N,FR,NT,IV)

Rt JRN 1

END

The variable I holds the number of the stratum for which the

four quantities are needed. it!e way of achieving thi-, would

be to read in or calculate the M sets of four quantities in

the main program and transfer them to NSTRAT in a common block.

K3.2.5 Subreutine-W4NRUT. The user need supply this

SUbroutine only

turn' a set of

Section, K3.I.3).

is 2. The subroutine must supply, in

.r each case in "ach stratum (see

The form of the subroutine WINPUT is;

SUBROUTINE WINPUT (W,M)

DIMENSION W(M)

RETURN

END

The dimension of array W, -f no temporary storage is called for,

will be V, the lumber of varlc;:as. If temporary storage is

called for, see Section K4. One way of arranging this subroutine

would be t/-lead in the Variate values in the main program,

transfc: them to WINPUT in a common block, and read from this

common block into array W the appropriate variato values of

eachcase.
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C:k e;..1ra integer valqable. say K. included in the common

could be used to keep trackof which was the

appliapriato case simply by incrementing K by one each time

WIN7gf is Called.

K3.2.6 Subroutine NSUBM. The user need supply this

subroutine only if PC1S equals one. The subroutine must

indicate to the calling subroutine. for.;ach pair of stratum

and variate J, whether variate J is deU.ned in stratum I.

The form of subroutine NSUBHV is:

SUBROUTINE NSUBHV (I,J,IHV)

RETURN

END

The subroutine tarries out its purpose by returning for-

iach pair of stratum I and variate J the value IHV 1 if

variate J does not appear for stratum I and iHV 0 otherwise.

Note that for any pair for which IHV 1; dummy variatas must

still be supplied for each of the cases in stratum I.

The data supplied in this subroutine hould not be found by

reading in fresh input from unit S. One way of implementina

the subroutine would be to read in the relevant data in the

main program and transfer it to NSUBHV through a common block

K3.2.7 Subroutine NsuBrv, The 1ser need supply this

subroutine only if PCI6 equals ). The subroutine must

indicate to the calling subroutine, for each pair of variate

J and function L. whether;
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the stratum SUM of variate J is involved in the

computation of function L ;.

2 the'variate J is not involved-it all in the computation

of function L;

the population sum of variate J is involved in the

computation of function 1;

The form of the subroutine NSUBFV is

SUBROUTINE NSUBFV (L,J,IFV)

RETURN

END

The value of In is to be to

(a) Lero if case (1) above holdS

(b) one if case (2) abuve holds

(0 twe if case (3) above holds.
Jr

.

.

.

The value!, of 1HV should not be AeterMined by reading-in fresh

input from internal unit S. One Way of implementing this

subroutine would be to read thd required values of IHV into

the main program and transfer them to NSUBFV in't common

. .

block.

K3.3 The_Dats

As indicIted in tLo previous two sctions, :here are varions

type.; of data to be coNaunicated to the program and there Are
. _

several options about how each is communicseel,"There'Mre fiwt

types of dat-1 input:
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The control and defini, ir..formation contained on the

Problem Card.

2 The information describing each straturo.

3 The variate values.

Inforration concerning irrelevant strata and

descriptors.

Sundry constants; weights, etc. that might be needed.

The information on the Problem Card is always expected in

card form (or equivalently; on unit five). The stratum

information may also be provided in card form, in which case

it must be preceded by a forma: card, or on an unformatted

binary file, or through a subroutine NSTRAT which may itself

read cards or could alternatiVely read the information from a

unit other than five (see PC4). The variate values may ':)e

read in using the same options as those for the stratum

descriptors (see PC6). Information concerning irrelevant strata

and variates is not to be read in from cards by subroutines

NSUBIN and NSUMITL This information may .ue read in from cards

by the main program and transferred to the subroutines by

common blocks, or it could be road from a unit other than five.

sundry weights, constants, etc; would be best read in from

cardS by the Main program and then transferred to the relevant

subroutines by ...emmon blocks, although it would be possible to

read than from units other than five; if the user does

decide to use auxiliary units care must he taken not to use

. any units needed for temporary storage (see i,e10 te "C14)

and to rewind them where relevant.
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Data in card form (or equivalently on it five) are called

for in the follow `-,; order:

Any data called for by the main program (see'above)

2 The ProbleM Card (see K3.1)

3 If PC4 0, a card giving the format for the following

stratum descriptors.

4 If PC4 = 0, or if NSTRAT reads cards, H cards supplying

the stratum descriptors.

If PC6 2 0,-. one or Lao cards (whichever is s. 'icated by

PC7) giving the format for the following variate values.

If PC6 0, or if N1NPUT reads cards; the user must here

supply the cards which give the V variate values. There

will be one or t,:o cards per case (as indicated by PC7)

and the cases are to be in order by strata.

K3.4 Printed Output.

In order, the printed output is:

The. required rAnimum dimensions for arrays A, N and D

of the main program; based on the entries of the Program

Card and the stratum descriptors (see K3.2.1). If PC17 = 1,

the program stops after printing this information.

Then for oath function:

2 If PFP 1, a line giving inferration for each computed

derivative. These arc grouped by stratum if stratus

sums are being considered; if both stratum and

population suas are being considered, the results for

population arc giv6n for stratum one. The printed

85
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information on each line is

(a) the number of the varlate involved in the differentiation

(b) the number of iterations invOved in the numerical

(c)

(d)

procedure (** denotes the maximum of 8)

the Value of tLe derivative

?he final increment used in the numerical procedure.

If a sum differentiation is lest than 1020 in absolute value,

the dec; ktive is set to zero, and this fact is indicated in

the priwd lilie.

3 If PCS 1, the 'U-statistics' are printed, grouped by

,Function and stratum. These are printed in E11.6 format,

10 to a line.

4 The tett:its, consisting of:

(a) the number of the function

(b) th .t. estimated value of the function

(c) the estimated variance of the estimator of the

function

(d) the estimated standard deviation (i.e. the square

root of (c))

(e) the coefficient of Variation (i.e. the standard

deviation divie 4 by the estimated value of the

funItion.

1
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K4 The Problem nC Insufficient Stcrage Space

In certain circumstances the amount of storage space indicated in

Section K3.2 will be larger than that available on particular systems.

To cope with this a series of internal units may be used to reduce

the need f,Jr: dimensioned array*; Ignoring possible extra

to n, dcl by the user-w-4-',-n Lubroutines, the upper bounds to

0-La storage space arc:

I floating -point a 4 VR * H 4V

2 integer n 4 ZH V

3 double precision d 4 Vti + 2V (i.e. 2d words)

where

H = number of strata

V * number of variates

R * total number of s=ple cases for all strata

K a number of sample cases in the largest -Jtratum.

TheS6 upper bounds may be much h.!.gher than those actually needed

in any particular situation. The t er may Make a nreliminary run

(set PC17 to 1), in which case the pl,.'gram will calculate the

Api.-,opriate upper bounds and then stop, If these upper bOunds are

Within the available -e, the user should skip the remaiader

of this section

the calculated upper bounds are too high, the user may try

each of the following strategies in turn.

K4.I Strategy_tie -r-Discard_Variate-Values_

Centrally the most troublesome storage problem is represented

by the term 'VR' in the floating-point storage space. This

is reduced to 1 if the user acts PCIO to 1 (format II) and

i.;:evides for a temporary stcrago ill= on unit 20. If more

a?
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temporary storage space is then required, try Strategy Two;

K4.2 Strategy Two-Reduce NumbeToz cases

In order to reduce the number of cases to be transferred to

subroutine VARNCE, the user may place a value K* into PC11

(format IS). This will ensure that the U--statistics arc

transferred to subroutine VARNCE in sets of K* rather than

sets of K. A temporary storage file must be provided on

internal unit 29, and the Site of K* is left to the

discretion of the user (it .;hould, of course, be staiIer than K).

This strategy reduces the second term in the floating-point

storage space to K.

If this strategy is used; the subroutine VARNCE must be altered

to allow the reading of U-statistics from unit 29.(which

is referred to internally as INV). The first line of the

subroutine is: (see Section K3.2.3).

SUBROUTINE VARNCE (TAI,N;FR,Q,INV)

In this statement, N is the total stratum size (which, for the

largest stratum, corresponds to K), M is the Site of the array

T which holds the U-statiStics (and which will equal K if

KeN, and N otherwise), and INV is the unit on which the

U-statistics are stored. The subroutine must be written so

as to expect to find the U=StatisticS in array T if M 3 N;

or to redd the U-statistict from unit INV in A 1 sets of M,

if tt 4 N, where

Fri
p

the largest integer smaller than( F.)
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In the latter case, the last set of 1J- statistics will contain

B N - MA values rather than M values. This is a rather

complicated procedure Nit s series of statements such as the

following will accomplish it.

SUBROUTINE VARNCE

DIMENSION T(M)

L r 0

ND = (N - 1) /D} + I

DO 2 J 1,ND

IF (ND.EQ.1) GO TO 1

READ (INV) T

1 DO 2 K = I,M

L L + I

IF (L.GT.N) GO TO 3

2 CONTINUE

3 Q

RETURN

END

Ir

Initialize variatles etc.

Calculate the variance

contribution fro. each

set of M 0-statistics

Put total variance into C

K4.3 StrategThree----01-scard-StTAtumVariate-Sumv

In order to reduce the number of variate sums transferred to

foncition F dimensioned arrays, the user may set PC12 to 1;

and provide a temporary storage file on internal unit 21. This

Will reduce the first term in the double-precision storage

space, VH to I. Note that if only population sums are to be

consi,Jred for davarintes (i.e. if either PC:6 U 2; or PCI6 =

1 and all values of IHV are either 1 or 2) then this strategy

is irrelevant.
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If this strategy is employed the function F must be altered

to allow for the reading of variate totals from an internal

unit. The first two lines of the function must be

DOUBLE PRECISION Fur:aim F (T,NT,S,NIS,NS,RiN:)

CONNON/CONDIF/LiINP,1

The variable 'L' is; as before; the nuMber of the function to be

evaluated. The variable 'I' is the number of the stratum

which has had its variate totals adjusted for the pu7prise of

numerical differentiation; the values of the..;.7. ariate totals

are contained in array R (of dimension V).

The variable 'INV' contains the number of -he internal unit on

which all the non-adjusted variate totals reside; these are

in H groups of V. In order to under-tand the procedure

described below the user must realize that the function F.is

used for two different purposes: first; it is called several

times in the process of numerical differentiation; :ccond, it

is called to provide an estitiate of the function which is

printed as part of the output. The .nformation regarding

Which purpose is appropriate is conveyed to the function using

Variable 'I':

if I > 0, the function is needed as part of the numerical

diffematiation process

2 if I - 0, the fanction is needed for the final estimate.

Case In this case the values of the V variate sums

for stratum I are contained in array R. In the first step

they should be manipulated in the appropriate way and the

results stored elsewhere.
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The pointer on the internal unit INV will now be located at

the first variate sum for the first case in stratum I L.

The set of variate sums for stratum I + I are then read in

from unit INV, the appropriate manipulation carried out, and

the results stored elsewhere. This process is repeated for

Stratum I 2, I 3 and so on up to stratum H. Unit INV is

then rewound and the same process repeated for strata 1, 2 ...

I - 1. Note that the set of variate sums for stratum I is net

to be read from unit INP;

Case 2: I O. In this case the H sets of variate some are

to be read from unit INP and handled appropriately. The

pointer on unit INP will be pointing at the first ease of

stratum I.

The following set of statements would 1., one way of implementing

the above procedure For simplicity it is assumed that there is

only one function to be evaluated by fnnctionF: h represents

the number of strata;

DOUBLE PRECISION FUNCTION F (T,NT,S,MS;NS,R,NR)

DOUBLE PRECISION T(NT);S(t.IS,NS),R(NR)

COtVO.N/COMMF/L, I NP ;1

IF (1 ,EQ Co) GO TO 1

IF (I;EQ;h) GO TO 3

IP I 1

O0 2 K * IP.h

READ (INP) R
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:'2 :,ccerrnx:;.
iituNO IND

. .
IF .(I;i2,0GO TO

-00

READ (INP)

4 CONTINUE

S F

RETURN

END

Vadat, tot: for strata 1, 2

J' 1 art. read In, are

stratum at -a tee, ,anipulated,

and the results stored.

.

Calculate 1 usley the stored

valves of the varlets tools

,for all strata.:

K4.4 Strategy Four - Delete Strctum Descriptors

In order to eliminateshe need to store stratum lemriptors

in dimensioned array:4 the user may place a 1 in PC13 and

provide temporary storage in unit 19. This w411 have Ow

effect of replacing the term Ifig in the floating-point total by
_ _ _ _ _

1, and of replacing the term 2H in the integer total by.2.

s -

K4.5 Strategy Five - The Last Resort.

If after resorting to all the above measuras there is still

,insufficient storage space, the user may enter in PC14. the

value V*'(forMit IS) which. will cause, each Set. of V variates

to. be dealt within Sets ofaize.V*. The user will need' to

:provide temporary storage on units 22 through 27 and also 28 .

if both

(4) population sums areimed; and '

77-',= (WI not 111 varfabjes.are defined for all.:...ittata

-Thia will reduce the terms 49,'V and 2V in thajloatAhipliointi.

integer,.. and double .precision tctals to 40,-V!.

roSpettively.

.9
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The implementation of this strategy involves the alteration

of subroutine WINPUT and of function F. First, some notation

is necessary; let V and V* be as above, then let

V]
V

A = [

= the largest intef.r smaller than V * V*

B = V - AV*

A if B = 0

1 A + 1 if C > 0

The subroutine WINPUT must be written so as to supply to the

calling program, for each case, C ..u'usets of V* variates,. with

only B variates contained in the last subset iVB > 0. The

modifications to subroutine WINPUT are basically the same as those

made for subroutine VARNCE in Strategy Two (see K3.2:5 and K4.2).

The alteratimis to subroutine F differ depending upon whether

population sums or stratum sums are involved. In either case

the user amst provide a ccmmon statement,

COM.%;0.N/CO.V4F/ L 1NP , I INT , M

If population sums are involved, the array of population sums

is given in C sets of V. Just as for Strategy Four, the variable

I determines .the use to which F is to be pit. If I ° U the

population sums are read from unit In in C sets of V* and all

are used to calculate F; If I > 0, then the array T will

contain the V* population sums for set M; these are manipulated

and then, as in Strategy Four; the remaining sets M 1, M 2

C are read in and manipulated, the unit INT is rewound, and

3



7 --er.

the sets 1, 2 M - 1 are also read in and manipulated. The

Fortran example in K4.3 may be modified as follows to !mplement

this procedure. Let c be the number of subsets (i.e. c'.C).

DOUBLE PRECISION FUNCTION F(T,NT,S,MS,NS,R,NR)

DOUBLE PRECISION T(NT),S(MS,NS),R(NR)

CCMON/COMF/LINP,I,INT,M

IF (I.EQ.0) GO TO 1

IF (M.EQ.c) GO TO 4

IP = M + I

GO TO 2

1 IP = + 1

2 DC 3 K = IP,c

READ (INT) T

3 CONTINUE

REWIND INT

IF (1.EQ.0.0R.M.EQ.1) GO TO 6

IP a M - 1

DO S K = i,IP

READ (INT) T

S CONTIt.UE

6 F a

RETURN

END

Manipulate the variate

surs for subset 14

Manipulate the variate

suTs for subsets 14 1,

M 2, ...

.

r

Mtnipulate the varlets

sun for subsets 1, 2

H - I

Calculate r

If stratum sums arc involved, a procedure combining both the

alterations to F described in Strategy Three, and those above

for the case of population sums must be implemented. The

procedure is described be:iuw,
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The array of stratum sums is given in H sets of V (one for

each stratum),.each of these broken into C subsets'of V. For

I > 0 the current values of R are for set 1; subset 4. The

user may use these if desired, and (whatever the value of I)

must:

for M < C, read from INP, sets of V' values, one at a time,

and do the corresponding calculations for subsets m + 1,

M + 2 ... C for set I;

for I < H, read C subsets and do likewise for each subset,
_

for each of the strata I + 1, I + 2 ... H;

3 Rewind INP

4 for i > 1, read. C subsets and do likewise for each subset;

fur each of strata 1, 2 ... I - 1;

for I > 0 and M > I read subsets 1, 2 M - 1 and do

Iikewisu for stratum I.

K4.6 Strategy Six The Ultimate--Resort-

If, after attempting all the above strategies, the -.e is still

insufficient storage space, the user is advised to .1.7y a trip

Co Tahiti. It may not solve the storage problems; but from a

new perspective the user may well decide it does not matter;

K4.7 Summary

The situation is summarized in Table K4.1.
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Table K4.1 Summary -o-fStratellitS-for-Ust_of_TeeporaryStorage

Indicator User must
on Problem provide Space

Strategy Card Columns unit saved Problems

1 PC10=I 21 20 VR-1 none

2 PC11=K* 22-26 29 K;K* alterations to VARNCE

3 PC12=1 27 21 p1-I alterations to F

4 PC13=1 2S 19 3H-3 none

S PC14=V* 29-33 22-28 6V-6V * dlturdtions to WINPUT
alterations to F

KS Sample Inputs- 3-nd-40u-touts-

These ex:kr:IOUS, provided by the progrdm's authors, arc deliberately

.

contrived to illustrate features of *..he program.

Exam:pLe A

Main beck (see K3.2.1):

DIMENSION A(60) ,N(60)

DOUBLE PRECISION U(60)

DIMENSION T(1) ,N8(1)

COMON/ASAMP/NBJ

READ(S,60) (NB(I),I=1,1)

60 FOR1AT(10I8)

RED(563) (T(I),I=1,1)

63. FORMAT (201:4;0)

DIMENSION WT(S.3)

COIF

K = 0

DO Si L=I,5

READ(S1600) PT(1L) iWT(2L)

600 FORMAT(2F1.0)

WT(3,L) =

WT(4,L)

SI WT(S,L) = WT(11L)*WT(2,L)

CALL PREPAR(A.60,N,60,0,60)

STOP

END
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Tr^,..714,1".,WWpFIN.MVT

Subroutines:

(a) (see K3.2.5)

SUBROUTINE 1NPUT(N,N)

DIMENSION WT(5,3),N(N)

COMM/AWAT ,K

K = K + 1

DO 53 J=1,5

54 W(J) = WT(J,K)

RETURN

END

(b) (see K3.2.4)

SUBROUTINE NSTRAT(I,N,FR,NT,IV)

DIMENSION NB(1),T(1)

COMON/ASAMP/NB,T

N = NB(1)

FR T(I)

NT .8 0

IV = 1

RETURN

END

(c) (see K3.2.2)

DOUBLE PRECISION FUNCTION F(XT,NT,XS,MS,N&M,NR)

DOUBLE PRECISION XT(NT);XS(MS;NS),XR(NR)

F = (XT(5) - XT(1)*XT(2)/75.)/

1DSQRT(CKT(3) - XT(1)**2/75.)*(KT(4) XT(2)2/75.))

RETURN

END

(Value of not needed as theri, is only i functio0.

Data Deck:

Card 1: Column 8 1

Card 2: Columns 1-4 0.04'

Card 3: Column 1

Column 2 2

Card 4: Column 1 0

Column 2 3
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Card 5: Column 1 es 2 (see K3.2 and K3.2.5)

Column 2 = 8

Card 6,, 4 = 1 (PC1)

Column 8 = 1 (PC2)

Column 12 = 5 (PC3)

Column 13 = 2 (PC4)

Column 16 = 2 (PC6)

Column 35 = 2 (PCI6)

Printed Output:

DIMENSICN LIMITS ARE 33 7 7

FUNCTION '1 .69337524.00 .64704124=01 .254370094:00 .36685776 +00

Example B (Same problem as Example A)

Main Deck (cee K3.2.1):

DIMENSION A(60),14(60)

DOUBLE PRECISION D(60)

CALL PREPAR(A,60,N,60,D,60)

STOP

END

SubrouciAes:

(a) (see K4.2 and K3.2.3; note that thir is simple random
sample formula)

SUBROUTINE VARNCE(T;M,I;N;FRA,INU)

DIMENSION T(M)

L n 0

n 0.

8 * O.

ND = (N - 4)/M

A n N

1

no 1

IF (NDA.1) Go TO 3

READ(INU) T

DO 1 KeliA

L L
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'. Data Deck:

Card I: Column 4 = I (PC1)

Column 8 = I (PC2)

Column 12 me 5 (PC3)

ColUmn 19 - 1 (PCS)

Column 20 = 1 (PC9)

Column 21 - 1 (PC10)

Column 26 = 2 (PC11)

Column 28 = 1 (PC13)

Column 33 = 2 (PC14)

Column 35 = 2 (PC16)

Card 2: Columns 1-15 = (I8,F4.0,12,11) (see K3.1.2)

Card 3: Olumn 8 =.3

Columns 13-14 = 7S

Column 15 = 3

Car4 4: ColuMns (2F2.0) (see K3.1.3)

Cardt 5-14: 0101

0101

0100

0003

0009

0000

0208

0464

1600

I00.



- 4. . u.: sAry,? - -,. ..T.T"1-'411
. .

Printed Output:

DIMENSION LIMITS ARE 11 4 4

DERIVATIVES FOR FUNCTION 1

1 3 -.83205026-02 .27139816-05

2 3 -,12800773-02 .15624S23-04

3 3 -.69337523-02 .41796269-05

4 3 -.55356558-03 .61855479-04

5 3 .55470018-02 .14210732_04

U-VALUES FOR FUNCTION 1,STRATUM 1

-.28017+00 -.216113+00

.232831=07

FUNCTION 1 .69337524+00 .64704124=01 .25437009+00 36685776+00

Note: Internal units 19, 20, 22, 23, 24, 25, 26, 27 and 29 are
all used

Example C

Main Deck: same as fer Example B

Subroutines:

(a) (see K3.2.6.)

SUBROUTINE NSUBJ1V (I,J;111V)

DIV = MINO(I-1,J-1)

RETURN

END

(b) (see K3.2.7)

SUBROUTINE NSUBFV (L,J,IFV)

IFV a MINO (L-1, .1-1)-

RETURN

END

(c) (see K3.2.2)

DOUBLE PRECISION FUNCTION T,NT,X5,MS,NS,NR)

DOUBLE PRECISION XT(NT),XS(:;S,NS),NR(NR)

conoNCO:VF/t.

F a Xt(2,1)/XS(1,1)



IF (L.EQ.2) RETURN

F = F*XS(1,2)

RETURN

END

Data Deck:

Card 1: Column 4 = 2

Column 8 = 2

Column 12 = 2

Column 34 = 1

Column 35 = 1

Card 2: Columns 1-13 = (I1,F1.0,2I1)

Card 3: Column 1 = 2

Column 3 n 4

Card 4: same as Card 3

Card 5: Columns 1-7 = (2F1.0)

Cards 7-10: 24

26

00

20

Prirted Output:

DIMENSION LIMITS ARE 19 9 6

PUNCT1ON 1 .50000000.01 .130000u0.02 .36055513.01 .72111025.09

FUNCTION 2 .50000000+00 .12500000+W .35355339.00 .70710678.00

102



K6 Li-sting of the -Program_

SUDRCUTIWE PREP4R14,IA,R.IA,D,ID) 0:404010
DiriE145106_41IALNII0iiiNT(121 00004020
DOUAI 7F.0.15106 NIL/ 440001:430

EG6h0a/KEP;;ii0A.FiiO4.inw.4.4;i.;iiKii,K3,i4iVii:IIVXVT,IHS 00000040
Ra'A5;i501
Fri7R 00440040

411 ;Ok4AT(514.2111021.511.13,221,15;312! 00000070
0_ ,vdoc,aaaa

00000074
InaiT 0440v200
IF (ji3 .GT. 0! GO 73 6 00004110

READ(5.61) FhT Ov4v040
61 1.-47i)2-.:U) Ovvy1.34

40 1 i=ioih 04000244
IF 1;1./4' - 1) 2;3;4 00500150

4 CALL FSTRA7iiiii.FRiP7,:*:1 00000160
GO TG 5 00040170

3 REA42I632 0004SO
00 TO 3 00004190

2 READ2S;FhTi 1,FR, 00000240
S IFAJU .0. 0_;AaD. IV .LT. 2) 00 70 9 00404220

I113 = 43,N4) vvvvv220

?.IF ii_;1). 0) GO IG 7 Ovvv...430

00004240

11_2 NA__ vvvvt.t.,Jv

FR * 1444 OW02-0
7 IF Cri ..O. Cc .GR. R .U7. 41 00 70 C.

wmi,ctiriS; vvvvv:50
a a; . a; N4 044vv;Tv

IF :1:3 ;GT. V .0R. .47. 42 UV 7G 2 V =')

71. 40100324

Is = N6 ...cArjv320

;(I 4 Wri) - iV OUA0330
1' CCi47IF. vtovvg346

.0. 0 .4R. i:7P. .47. 01 70 :4 04040350
00000340

24 II) a 1 00vvv4/0
IF iR3.47; 02 44.70 21 omosao

. ;46 00000370
12 12 -; I + 11.1 40000400

j2 1 i IDi_ 00400410

J3 4 4 .4 II.; 00000420
1524 a 0000430
111:F. a 1 viluvv440

IF iEG AT. 0) GO TO 12 00000430
yviody.44

I1121 tit) 000404:0
2: I3 a. 12 1D:44421; 0404042'0

IF .E0. 4 .05%. KH .07. In) 00 70 15 004444;0
I1i3 a Kr' 0444)300
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13 I4 i 13 4 1D3

1" .4"""..

t70 TolZP

14 gDIA . 1
0'400520

1.414 s i
00000530

NFVT . NFV
00040540

:F 1:1F4 -.N7; il Ma 70.15 00040550

ii4 s 1

0000050

'Id i i
00000570

64 14 1.sii07
00000580

DO hi ..141010
00000570

CALL ;;SUI..FI/ilij,i_IFVi

'liA

00404440

s 41.:4iiiA;IFV)
00000610

04 - hii;Oicli.iiFV)
00004620

14 45:17iiii:E
vvvvv430

IF iii, .E.G. 0 .AN4. AS .EG. 21 G4 70 15 004006;0

17 OA ;Ea. 1) GO 70 17 0444:4450

4F1/7 a 0
00004;40

GO 70 15
0000047*

17 NFV7 a 2
40400660

IS IF AFT ;Ea. 2 ...GR. K1i ;Z0. II GO 14 16 000046/0

gDIA . 1111
40004700

)14;i s NV
00000710

16 )12_1; I+ /17.11Abg11;
00004720

gVii . NV
00000730

IF_CiV%; ,E3. 4) GO 70 17
000007;0

iiV4 ;r. ir,4
004047:0

17 II = 14 1 1104 00004740

16 s 73 i1V.1
04000774

77 = 16 * ii1io
0040070

j7 4 j5 i:Vti 1

0u0vv70

FD2 2 1

00004644

IF tiff V1 .F.0; 4) GO 73 2:,

g42 2 liVil

00540010
040004:0

20 g: - 12 1.a2
01,44444C

4.0 . 1
00004040

IF WF:T .E0i 2 .7:. ;::i .tr;. oi .-. To 2; 04000414

1145 ; NVet
0000A:40

2; gi 2 g3 V %1.1 - 1
00500470

117 i 1
54004440 -:,..

IF i.474 .E.0. 4/ 00_70 22
00004410

17 it1eW .E0; 2 .4;14.- afiv E24 4:/: Or, T,/ :2 44vvv*yv

_ 157 . 41'4
040;4710

:2 IT 4 17 * 147 - 1

40000720

gA174.44i44) ii;j7;g7
00040750

45 Fr;AA7iii;:16:1.;:-Ii2:5a lull i1 4T.E._ 111XiI5// vvyvve44

IF ;.:ii: v;II. J .41%. 77 .G7. I4i 03 70 :3 00440150

17 1i; ;01% 1;1 .41.. N7 .61. 14,_40_74 :: v4444144

"" 'L".4:!1::41.tai:;,;Z.::4;;-Ai:313094A14A.4;:41enr1,9400070
i4.777.U.:i-J2i,;:;;',:A.::;:iZ4I;:;.4 :.Z.i47.i.:4 00I,O4i1,3

..., ,.., 0000514

.: .cs.m.,

Z.14
00041444
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:$1F4A00_10Z U.E4VA;;TT.:714.1.1D2%G.1:11,14514,TfigViii72i1D7i.
iii07;rj7 , T.0001.024-

FiiI11i24iiTlii0144TilD2A#102G1,410).;1(;411),SU(NIM), 00001030
177:-,171;1;,T:11U7i-,4-4711D1i;iViiiD11;ID1W4;;1 00001040-

D0U42 P41.11..4 AFC0140.1616.X7(K4210:7,11M),F;AP;AL 00001050
VUJOLC 004;060

000010%0
C010:04/C3onFiL,74,:.E174;j0 00x4;0`00
.1151 INJIiiSA;IN3G414TD;IND,I4T,147.,11// 0000100

1:022;23,25:0i2;%26291 00001100
14D 1:;IJ - 11.11V1 00001110
14?*11 00001120
147G:24 0001130
HVg 2 NV - NOHLiNVO - 1) 00001140
111TA AO;EXI;EXii4VAL/1.E50.2:0,1.1:80.7.-201. '00001150
IF 1J0.0 01 00 70 405 00001) 40

Ria 124i4A40(i=.1) 00001170
READ15;631 (F67111.11,1a1;;;111) 0000.iao
1AITEI6i6-;) (Fii7i;111,1:1,1;7.6) 00001190

65 FURHAT(I2A6; 00001200
405 47 * 0 00001210

DO 110 14;;Ng 04001220
IF US .za, o; OG TO 404 00001250

0000;240
OM:12SO
40001:0
00001270
couoi :ao

00001290
00001340
00001310
00001570
40001310
00001540
00401550
00001500
00001570
00001300
000011?0
00001400
00001410
00001470
00401430
00001440
00401450
00001140
044414/0
000t4t4
00001410
.04401504

40001514
04041120

117.AD1I31 ;iD4hF,71.GC,IVAR

00 70 403;
404 asil;t:

F114: 71iI1

40 :; J = 0
DO ;151 J4,1010
141.; 4 6/;0141:diN4-J(:)

DO 115.3.;:,i;

JC s jC 1

IF (I ;G7. 1 ;07 F)T 1776.

:Z 7i.1) a O.

1155 ID1J; z;;

0) 03 T.: 1155

IF iireiV .LO. 01 03 TO 11.7.

CAtt_0313A711,JCINV)
IF iIi1V ;EQ. v) 00 70 1;13

__ 'NJ) 2_0
1153 CD;;T;i1UE

;EG; 1) 30 70 1151
iANE1::11.1 15

/7 11 ;GI; 1 ;0;..; i:rUT .a. 41 3U 70 1151
L;I:IICC:.7.741 Al

1151 CCiIi4:1Z

IF. 610 .F0. 1) 00 70 1114
1115,

il .0; 1 ;,;. EU; 0) G0 70 1134
;E+1 1.4A

1;51 DU 1: i:,10.34.4-
I w l ;

105

114



JE -4 3:
DO 121___J1) al
IF (331) 1) 4051;40520053

4053 CALL 1114F 07
AO 70 436 . . .. .

4652 IlEs1;(1:30) U
30 76 406

St 4051
406 IOC HINOGV.4,111)-it)

IF (10:61..37. I) a TO ;060
Nal TEA INN; es
33 T3 4061

4060 aa :i.))2 4-1 ,,Z1VC
je 4

4042 N(J)
4661 IF INVis !Ea. 11 u0 70 1223

IF ZN .F.0 ". / 30 70 1224
3£6301331 Sii _ _

1223 U 41: .os. Is ou i6 1121
122; 00_123 ..;=10;vr.
123 SNi".3 = 0.

1221 t.,-;

if mv} -A;;;.4; 30 7Z I I
= 3Uiji U1.11

11. 1i 1I11UE

IF (-411'0 .za. 1$ 00 TS 121
ual:zinsai SU
t5:1M6E,

INVD.E0.1) 00 70 12
REUIND IND

_ _ CALL. S01701

.!..3rL':'e./1..t.... ...-4 ?-: 1.7_.2 '' '
,,..1-1,A... r.,'.---s-v..-t.-4.,. e ..... , kw- ,...-.:5 ..; r s-lc. *:..ir7.._.:

f.,_4,...:.'46,,...-_!--7::-....---,

4i
L

44100 33

60001610
001131610
vvv s 030
00001440

lii004" 0111.,6:
00001670
07,001630'
0030.1.61 rs"

06001700
00301710._
604017N
;400i750
00001740
00001750
00001760
00301770
00001786
00001710
00001600
000013;0
00001820
00001330.

.4)6000000117.34st
12 CG)171AUE

tO 123 il)=1 'NO
(31)11 AO. 1) 00 TO 126

7.EAD I IND) ID
NE6211144)
IF INFV7 .£0. 01 60 i0 -126 -

NEADIIIIi; KT
4Y.,124 DO 114 aal

- -

17 (.1 .31. N'VN .61D 33 .£2., NVD) GO 70 1270_
37 (I11(31 .E111. 0) GO TO .114
Ti MAR .£6 0 .a..1;aa 2) 60 70 1142
CH 17_2 SUL31iFtAr. . - .-

1147 IF iNFYT .£6. V 60 70 11422 1.
IF wi .£0. 61 Oil 711 L1420 '"
XX Li) a SU( a ; .
tri 73 11421

11420 IP( I .i) SOU) .

11421 IF INF VI .E0. 0) 60 70 114
11422 NM)) a X71.11 SOU)

;
'

.

.7."*";.. ,

itcc

40001660
f. 40007370

oo;otaao .
"...MI-00169G

00001100
00001710
4001iI0
30001930'
00001940
0001753 ,
00031740.. :

03001570 .
40001#33.,
00001'79 .

0600:000
0040201D.-..-

op;o2.:44

me;4.--
. ;
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7.C.,,,M74,;(7,/"7,71,-Ar. mwir.rmeltr14,,,rfr

114 CLii7I1IOZ ZI-OW200
;270 iF (NVO .Z3. 1) GO TO 125 000020750

IF 167VI .0. Oi GO TO 127 00002060
1M17E(_lii1L1 XT 00002070

127 iF (RF14. .EC: 2 .OR. ICH .ED. 0) GO TO 125 00002080
URITEiiiiP) XX 0000IOT4

125 CON71KUE 00002100
IF iNFVT .E0._2 .UR.__KH_._20; 0) 03 TO i250 00002110
IF .G7. 1) GO 70 125/0 0004.1120
WW:TECIKP/ XX 00002110

i2S0 IF ;EU. li 03 13 110 vvvv.1140
REL:1;10 00002150

NSA
IF CriFVT .20. 0) 00 TG /10
CALL 5147C.riiiii7Ajlia3;

110 CUNTitiUE

.4oaa:;a0

00002170
0:002100

vvvvLITO
17 CIEIA -.GT. 11 GC IO 134 4000224(1
%CUM', 141J uvvv.-10
IF (RS 0)-30 TO 134 '04002(20
REUIN) IhS 00002Z50

:3; IF ii;V .Z0. 1 .GR. 1117T 0) 00 TO 1Z1 04002240
'FEUI4D INTA 04002730

131 IF (gH .E0. 0) 00 TO 132 00002260
RNIRB 00002170

132 00 142 1=11i;F 4000,...0v
I a 0 00U022;4
JD = 4 000023.-.0

= F(XT,KU2,XF,KOIA.gOtB,XXigi.5i 040023'4
0A6aAR3i7,Fiii 00002324
A a O. 00002330
KY a 0 vv./v.:3;0
D0 1 :=IiH 40002340
IF ijP 00002360
IF ii;FriT .17. 2: 03 Ta ;;;02 04002374
:;RITEii._;;) U0402530

G4 FUR FUliC7IG11 IS; aaac,23=0
VU 7U 10: 00002400

)002 1A172(442..:4) 111 00002;10
304 .POR;;AC1IXi22HIERIVATI.7.3 FUR FU;1C7101! I3,141(. 37RA7Uii IS) wv,vs420
10U1 IF (l_.EU. 1; aa 70 10:3 40002;30

IF ii:FV7 .20. W4 .217t. 01 00 70 103 000021140
:003 J. - 0

a.
IF .q11 arv; ail. 2; 00 7U 1004

00002;50
00002460

IF :14.10 ;01; i1 aa IV 1004 40002470
REA0CI14; %X 00002400

1004 ;A 120_31 -.1.40 0vvv.:4?0
IF CA31. .EU. i .UR. ;CF3T 4i 00 TC, 00002500
RE4I,i1;a4; %I 00002510
IF ii ;EC/; ;; 00 70 1:0 00002S:0
u;ivian 12 00001530

120 IF Ii :;.; .23. 0 .OR. aFV7 .E3. 2) 00 7G 1:i 00002540
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IF Win AO. 11 00 10 12?
READili( i) XX

227 RUC a HI140(gUhiNV-JCS

DO 101 jaliiiVe .

je a jC + I
IF (GFV - 1) 1605;14

IS CALL OSUliFV(LiJC.,,IFV)
IF (IFV ;EG; i) GO TO 310
CALL N5G61iV(i1./C.IiiV)

IF (7,HV ..E0; ;) GO TO 310
IF (Ii .; .ED. 0) GO TO 16

;4 10(J) =
IF ii .GT.11 GO TO 32

= 11A63(XT(...11)

IF (A6 AVAL) GO TO 31
OD TO 11

32 Yi(j) YZ(J)
GO 70 101

16 10(J) a 2
IF igg ;GT; 0) 00 TO 161

AB =DAIii(NNliJ;);
GO TO ;7

161 4.13 = DA6S(XX(J))

11 IF (A3 ;LT; AVAL) GO TO 31
RIF. 2 2.6EXIVA3
R2F = EX1iDAA

2 IT = 0
ig = 0
DI = AB AU
DIT = 100;414

9 IT = IT
IF (IT ;GT; 3) GO TO 30
RI =
IF (Fl ;LT; ;;) GO TO 5 _

IF (10(J) .F.O. )) GO TO 175
17 (31 .GT; 0) 00 TO 172
XF(Ii.J) = + 01

= FIXT,K102;XPiRDIA;U:DiUX,03)hf
*a(!iJ)=
AL = FiXT,g1,2,k17,01Ai4D11:,XX,i(D31
XP(I,j) = XP(I,J1 + DI
00 TO 171

173 XIij) = XT(J) + 01
AP -2; FiXTiKD2iXPiXDIA,KDIS,XX,g03)
XI(J) i XI(J) - 2.4111
IF (4',-.F.O. 1) GO TO 1731
REA0(I(TA) XT
ZT(J) = 'in)) - DI

1721 AL a F(XIdat2;XP-;g41A.4016,::4,U.131

:ITU) XTiJi_ TIT
iF (NO .Z0. ;i 00 TO 171

108

vv0-0-27---W

.00002360
00001310
000023S4
00002590
00002600
40002610
00002620
00002650
00002640
00002630
00002660
00002670
-00002i30
00002670
00002700
00002710
00002720
00002700
00002140
OW02:750
00002760
40002710
00002700
00002170
vuvo..600

0000:310
00002820
00002G30
00002640
00002650
00002'660

00002'670

Ovvv4060
00002870
00002700
00002710
00002920
00002930
00002940
000027,50

00002760
04002770
00002960
00002970
00005000
0000014
00003020
40003050
00:+01040
00045050



acmat nips, As . souvv...oev

60 T6 171 "00053070
172 XX(J) = XX(J) + DI VVVVJUOV

AP a FiXT, 1(112iX9iRGIAiX5i;-XXiRD31 0003070.
READ(MP) 0. 00003;00
taij; = XX(ji - DI 00005110
AL = FiXTRD2,XF,R0IA,011,XX,KD3) 00003120
RL11G(Ii(71 AA 00U43135
R2 a_ol.lf11A13(AF-AL) 05140
IF (R2 .L7. .1) GU 10 6 0003;35
IF C61 .UR. R2 .L1. ov. / uu tu i uvuOI;av

;j = 41:11(11),R2) 500U3170
ej a_DS;RT;;J1 000i:1;0
U5 TG 5 o4oci3via

3 Rj a R1 00003100
03 70 ; 00003210

6 AJ ;2 _ 0003220
In a IX 1 00003230
IF (IK_.11. 3) GU T3 8 00603240

30 IT = ovuuv 00053250
15 7 Ouvuzio0

8 'AI = I1iinJ 00003270

iii Dioiiii(DI,DIT; 00003280
uG 7G 7 00003290

31 IF (jP .LG. 01 Gt1 TO 310 0vvv3300
U;;TE(61.102) je 00003310

502 FUR11A715diii3,26H ZE;t1 sun, ZERO DERIVATIVE ) 001,va.;1)

310 17(J) a O. 00003330

TUIJi 0 00003540
GO TO 141 000033Z0

7 W(J) a (AF-Ali.51Di 0000330
IF (J? .E0. 0) GO TO 10) 0000330
URITE(6.8001 jC,IT,1(j)451 uvut1J4.aii.

80 FORmA1(51;10,1X,12,2(1X;813.111) 00005370
tU1 000)3400

IFA_Uza ;EG; 11 GG TO ilirZ 00001410
URITE(NY) 11 05003420
1IRITE(Itibi ID f0003430

1202 IF (I .15T. 1 OR N71 01 GO TO 120 lOvv.),40

IF (P7VT .F.U. 2 .Ai(V. isny .E5. 01 03 TO 120 00003450
17 (RVI: .%G. 1) GO 73 IVA 05503460
U11I:ELIO:7j YT 00001470
G5 10 ;20 05003450

1164 DO 1203 Ja1,RVi1 00001490

1203 12(3) a Y7(J1 00003300.
120 ca;;;:auz_ 000035;0
103 IF (;1 .ZO. 0) GO 10 1031 00003520

REA3(iii1) 4SAHP,FRAC,IVAR 00003510
50;711 1532 .vvvv.440

1511 1t3AaP :AGM) 00005354
FRAC a 11(1) 00003360
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WAR IVTII)
1032 IF Ma .a. 1) GO TO 1030

REUM
RUM IND ,

REUIRD

"..7f- t'
7- V,

OrassrE
74 -

00003390
000360
00003:73
0000:;0 -.

00003633
00003440 -
00003650
00003660
00007S70
00003600-
vO0v46'i0

00003700
00014710
00003720
00003734
00003740
000033750

00003760
00003770'
00003700
00003770
*0003300
0005'0'010

00005;20
00003;50
00003040
000036S0
00003;60
00003;70

. 00005OS4

00003E70
00;03700
000431'10

00003720
00003230
00043i44%
00003;54
04003160

- 00003270.
ompao.
000057211:a.-

'00004404:.::7

0000400.

D:004030-
00004040.- .""

oc4o4sab ;7:
oo47,6t4p--

t--c'
. -

r4"*- '"*. :;:t'- .ves.r.r.I.. . . ,

IF CliFV; ;EQ. 01 GO TO 1030
:71 NFV: .E0., 2 .A1(0; RHV ;Ea; 0) 40 TO 1030
REUIRD IHZ

1030 D = 0;
R40 j0
RVAR - ICAR/2
jVAR a iiNs 24RVAR

IF MAR .EG. 0 .0R. NSAHP .LE. HU) GO TO 1034
glit; 4 1

MI 0 = 0;

ICT = 0
IF tJU ;EQ. 0) GO 74 201
URITZt61003) 1.0

603 FORHATC/1X,22HU-VAL1jES FOR FURCTIOR IS 10H; STRATUh IS)
201 DD 20 %-ii,usAiiP

SS = 0;
JC k 0

KY =_RY + 1 _ _

DO 271 JD=1,HV0
NVC = HINOINVhiNV!-.101_ -

:F ilD24 .0T. 1) 00 TO 2710
RE4DilaULD
GO TC 2711

2710 DO 2712 J=1;UVC
3C = JC + 1

2712 U(..1) = UiiiatjC)

2711 IF ;ED; 11 GO TO 273
READCIN() TY
hEAG(IHD)

273 LO 27 J=1,4VC
IF (10(J) ;EU; 0) GO 70 27

SS = S$ TYij1=1;ii)
27 001171RUE

271 LORTINUE
IF t;PAR ;F.G. Oi 00 TO 2713
SS = 5SiFRAC.

2713 IF CND ;EG'. I; GO TO 274
IHT

REUIHD 1;411.

274 IF i.:13 .EG. 0 .AR0. HOAR .c0. G) 0.0.T4
ICT_=_ICT 1 . .

IF IICT ALT;_RU-._;44i._gY.LT;74.34141-DG.11171iij

IF CJU .CM. 01 44 10 10; )

262 ITE;6.3072)_11.1i.iCTi.jC7,4,ICTi:

045 FaRnATi3;;;;;E14.6)V



/

btu ;
IF mal..Ea.:-a)'44

. ;;;%17EiiAo.a..:

13 1 iRVAR .NE. 3) C0 TO 23
161 B 3i

17 ig ;EC:. 11 GO TO 20
R

0 = a 4 C3-5-53).;:i43.iS-1.11
20 CENIINUE

IF iKVAR .NE. 01 GO IC li
OS =_NSAHP
6= - FRAC1.3340/in - 1.i
U0 13 1

19 IF (gNU ;E.G.; 01 450 10 171

REUI46 INU
171 CAL VAknE(U,RUil,NSAilF,FRAC,Q,Ii:U1

IF :1:NU .EG. 01 GO 13 1

3E;1116 IHU

= A ;

VAR = A _

SA 55871A)
RWR=VFie
CARACiA33(VF81
IF in:A .01. 1) GO 13 1020
REqi THU.
IFAKE 20. 0) 00 76 1420
REGING 145

1:20 IF (.;F:ii ;Ell. .08. KR .14; 01 63 74 102
3E0IHD IR?

10: gRITEU).811 1.-..RYFdiVAPt,EARiCA

31 70;341i.714SHFUNC110H 15,4(12,E1S.Cii
REIG;H
END
SUROUTIHE SUI7CH1CA,K3)
JA a RA
Ja =
KA 4 ja
R3
FEUld0 gA
EEUIND R;

1 EETUR4

.EL .

irreevocrappe.wzrrray.
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